Characterization of a novel loss-of-function mutation of PAX8 associated with congenital hypothyroidism.

IEOS, G. Salvatore National Research Council, Naples, Italy.
Clinical Endocrinology (Impact Factor: 3.4). 12/2010; 73(6):808-14. DOI: 10.1111/j.1365-2265.2010.03851.x
Source: PubMed

ABSTRACT Congenital hypothyroidism (CH) is a common endocrine disease that occurs in about 1:3000 newborns. In 80-85% of the cases, CH is presumably secondary to thyroid dysgenesis (TD), a defect in the organogenesis of the gland leading to an ectopic (30-45%), absent (agenesis, 35-40%) or hypoplastic (5%) thyroid gland. The pathogenesis of TD is still largely unknown. Most cases of TD are sporadic, although familial occurrences have occasionally been described. Recently, mutations in the PAX8 transcription factor have been identified in patients with TD.
Our aim was to identify and functionally characterize novel PAX8 mutations with autosomal dominant transmission responsible for TD.
The PAX8 gene was sequenced in a mother and child both suffering from congenital hypothyroidism (CH) because of thyroid hypoplasia. Subsequently, expression vectors encoding the mutated PAX8 were generated, and the effects of the mutation on both the DNA-binding capability and the transcriptional activity were evaluated.
PAX8 gene sequencing revealed a heterozygous mutation that consists of the substitution of a histidine residue with a glutamine at position 55 of the PAX8 protein (H55Q). When tested in cotransfection experiments with a thyroglobulin promoter reporter construct, the mutant protein turned out to be still able to bind DNA in Electrophoretic Mobility Shift Assay assays but transcriptionally inactive.
Our findings confirm the important role of PAX8 in normal thyroid development and support the evidence that in humans haploinsufficiency of PAX8 is associated with TD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Congenital hypothyroidism is a frequent disease occurring with an incidence of about 1/2500 newborns/year. In 80-85% of the cases CH is caused by alterations in thyroid morphogenesis, generally indicated by the term "thyroid dysgenesis" (TD). TD is generally a sporadic disease, but in about 5% of the cases a genetic origin has been demonstrated. In these cases, mutations in genes playing a role during thyroid morphogenesis (NKX2-1, PAX8, FOXE1, NKX2-5, TSHR) have been reported. Aim. This work reviews the main steps of thyroid morphogenesis and all the genetic alterations associated with TD and published in the literature.
    Journal of endocrinological investigation 05/2013; · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main object of the present study was to explore the effect on thyroidal proteins following mild iodine deficiency (ID)-induced maternal hypothyroxinemia during pregnancy and lactation. In the present study, we established a maternal hypothyroxinemia model in female Wistar rats by using a mild ID diet. Maternal thyroid iodine content and thyroid weight were measured. Expressions of thyroid-associated proteins were analyzed. The results showed that the mild ID diet increased thyroid weight, decreased thyroid iodine content and increased expressions of thyroid transcription factor 1, paired box gene 8 and Na+/I- symporter on gestational day (GD) 19 and postpartum days (PN) 21 in the maternal thyroid. Moreover, the up-regulated expressions of type 1 iodothyronine deiodinase (DIO1) and type 2 iodothyronine deiodinase (DIO2) were detected in the mild ID group on GD19 and PN21. Taken together, our data indicates that during pregnancy and lactation, a maternal mild ID could induce hypothyroxinemia and increase the thyroidal DIO1 and DIO2 levels.
    International Journal of Environmental Research and Public Health 01/2013; 10(8):3233-45. · 2.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor Pax8, a member of the Paired-box gene family, is a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well characterized with respect to its role in regulating genes responsible for thyroid differentiation, its involvement in cell survival and proliferation has been hypothesized but remains unclear. Here, we show that Pax8 overexpression significantly increases proliferation and colony-forming efficiency of Fischer rat thyroid line 5 epithelial cells, although it is not sufficient to overcome their hormone dependence. More interestingly, we show that Pax8-specific silencing induces apoptosis through a p53-dependent pathway that involves caspase-3 activation and cleavage of poly(ADP)ribose polymerase. Our data indicate that tumor protein 53 induced nuclear protein 1 (tp53inp1), a positive regulator of p53-dependent cell cycle arrest and apoptosis, is a transcriptional target of Pax8 and is upregulated by Pax8 knockdown. Remarkably, tp53inp1 silencing significantly abolishes Pax8-induced apoptosis thus suggesting that tp53inp1 may be the mediator of the observed effects. In conclusion, our data highlight that Pax8 is required for the survival of differentiated epithelial cells and its expression levels are able to modulate the proliferation rate of such cells.
    Cell Death & Disease 01/2013; 4:e729. · 6.04 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014