Article

Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg( ii )

Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
Integrative Biology (Impact Factor: 4). 02/2011; 3(2):126-33. DOI: 10.1039/c0ib00019a
Source: PubMed

ABSTRACT Naturally occurring microbes perform a variety of useful functions, with more complex processes requiring multiple functions performed by communities of multiple microbes. Synthetic biology via genetic engineering may be used to achieve desired multiple functions, e.g. multistep chemical and biological transformations, by adding genes to a single organism, but this is sometimes not possible due to incompatible metabolic requirements or not desirable in certain applications, especially in medical or environmental applications. Achieving multiple functions by mixing microbes that have not evolved to function together may not work due to competition of microbes, or lack of interactions among microbes. In nature, microbial communities are commonly spatially structured. Here, we tested whether spatial structure can be used to create a community of microbes that can perform a function they do not perform individually or when simply mixed. We constructed a core-shell fiber with Sphingobium chlorophenolicum, a pentachlorophenol (PCP) degrader, in the core layer and Ralstonia metallidurans, a mercuric ion (Hg(ii)) reducer, in the shell layer as a structured community using microfluidic laminar flow techniques. We applied a mixture of PCP and Hg(ii) to either a simple well-mixed culture broth (i.e. the unstructured community) or the spatially structured core-shell fibers. We found that without spatial structure, the community was unable to degrade PCP in the presence of Hg(ii) because S. chlorophenolicum is sensitive to Hg(ii). In contrast, with spatial structure in a core-shell fiber system, S. chlorophenolicum in a core layer was protected by R. metallidurans deposited in a shell layer, and the community was able to completely remove both PCP and Hg(ii) from a mixture. The appropriate size of the core-shell fiber was determined by the Damköhler number-the timescale of removal of Hg(ii) was on the same order of the timescale of diffusion of Hg(ii) through the outer layer when the shell layer was on the order of ~200 μm. Ultimately, with the ease of a child putting together 'Legos' to build a complex structure, using this approach one may be able to put together microorganisms to build communities that perform functions in vitro or even in vivo, e.g. as in a "microbiome on a pill".

0 Followers
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: : Microbial biofilms are complex self-organized communities of microbial cells that provide protective environments for the cells that inhabit the biofilm, enabling them to respond efficiently to challenges. The enhanced resistance and altered metabolism of the cells in the biofilm makes biofilms potentially very useful in chemical production processes, including the production of pharmaceuticals and biofuels. Synthetic biofilms in which the composition and architecture of the biofilm is controlled by the designer could help in harnessing this potential. In this chapter we discuss biofilm architecture, how it can be created by natural or artificial means, and how it affects biofilm function.
    Advances in biochemical engineering/biotechnology 09/2013; DOI:10.1007/10_2013_248 · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease. Polymicrobial synergy can occur during infection, in which the combined effect of two or more microbes on disease is worse than seen with any of the individuals alone. Powerful genomic methods are increasingly used to study microbial communities, including metagenomics to reveal the members and genetic content of a community and metatranscriptomics to describe the activities of community members. Recent efforts focused toward a mechanistic understanding of these interactions have led to a better appreciation of the precise bases of polymicrobial synergy in communities containing bacteria, eukaryotic microbes, and/or viruses. These studies have benefited from advances in the development of in vivo models of polymicrobial infection and modern techniques to profile the spatial and chemical bases of intermicrobial communication. This review describes the breadth of mechanisms microbes use to interact in ways that impact pathogenesis and techniques to study polymicrobial communities.
    The Journal of Microbiology 03/2014; 52(3):188-99. DOI:10.1007/s12275-014-4067-3 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.
    10/2012; 3(4):e201210008. DOI:10.5936/csbj.201210008

Preview

Download
2 Downloads
Available from