Article

FTO genotype and adiposity in children: physical activity levels influence the effect of the risk genotype in adolescent males.

Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
European journal of human genetics: EJHG (Impact Factor: 3.56). 12/2010; 18(12):1339-43. DOI: 10.1038/ejhg.2010.131
Source: PubMed

ABSTRACT Studies of the fat mass and obesity-associated (FTO) gene provide compelling evidence of genetic variation in the general population that influences fat levels and obesity risk. Studies of the interaction between genetic and environmental factors such as physical activity (PA) will promote the understanding of how lifestyle can modulate genetic contributions to obesity. In this study, we investigated the effect of FTO genotype, and interactions with PA or energy intake, in young children and adolescents. In all, 1-5-year-old children from the Growth, Exercise and Nutrition Epidemiological Study in preSchoolers (GENESIS) study (N=1980) and 11-18-year-old Greek adolescents (N=949) were measured for adiposity-related phenotypes and genotyped at the FTO single-nucleotide polymorphism (SNP) marker, rs17817449. Adolescents were classified as physically active or inactive based on self-reported levels of PA. In adolescents, FTO genotype influenced weight (P=0.001) and BMI (P=0.007). There was also a significant SNP(*)PA(*)gender interaction (P=0.028) on BMI, which reflected the association between FTO genotype and BMI in males (P=0.016), but not females (P=0.15), and significant SNP(*)PA interaction in males (P=0.007), but not females (P=0.74). The FTO genotype effect was more pronounced in inactive than active males. Inactive males homozygous for the G allele had a mean BMI 3 kg/m(2) higher than T carriers (P=0.008). In the GENESIS study, no significant association between FTO genotype and adiposity was found. The present findings highlight PA as an important factor modifying the effect of FTO genotype.

0 Bookmarks
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal overnutrition is implicated in the development of adult metabolic disease, and has been shown to alter the expression of genes involved in energy homeostasis. In the present study, we aimed to test whether a short period of voluntary exercise, followed by a sedentary period, would regulate hypothalamic markers involved in appetite. Adult female Sprague–Dawley rats were fed either normal chow or high‐fat diet (HFD) ad lib. for 5 weeks, mated and continued on their assigned diet during gestation/lactation. At weaning males, were separated into chow or HFD groups; half were exercised (running wheels), whereas the remainder were sedentary. At week 10, wheels were removed and rats remained sedentary for 5 weeks, prior to tissue collection. Maternal obesity increased offspring adiposity at 15 weeks and this was exacerbated by postnatal HFD (P Document Type: Research Article DOI: http://dx.doi.org/10.1111/jne.12053 Publication date: August 1, 2013 $(document).ready(function() { var shortdescription = $(".originaldescription").text().replace(/\\&/g, '&').replace(/\\, '<').replace(/\\>/g, '>').replace(/\\t/g, ' ').replace(/\\n/g, ''); if (shortdescription.length > 350){ shortdescription = "" + shortdescription.substring(0,250) + "... more"; } $(".descriptionitem").prepend(shortdescription); $(".shortdescription a").click(function() { $(".shortdescription").hide(); $(".originaldescription").slideDown(); return false; }); }); Related content In this: publication By this: publisher In this Subject: Anatomy & Physiology By this author: Caruso, V. ; Bahari, H. ; Morris, M. J. GA_googleFillSlot("Horizontal_banner_bottom");
    Journal of Neuroendocrinology 05/2013; 25(8). DOI:10.1111/jne.12053 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:Previous studies reporting on the interaction between physical activity and genetic susceptibility on obesity have been cross-sectional and have not considered the potential influences of other lifestyle behaviours. The aim of this study was to examine modification of genetic influences on changes across age in adiposity during mid-adulthood by physical activity and smoking.Methods:The sample comprised 2444 participants who were genotyped for 11 obesity variants and had body mass index (BMI), waist circumference-to-height ratio (WHtR), physical activity and smoking measures at 36, 43, 53 and 60-64 years of age. A genetic risk score (GRS) comprising the sum of risk alleles was computed. Structural equation models investigated modification of the longitudinal GRS associations by physical activity (active versus inactive) and smoking (non-smoker versus smoker), using a latent linear spline to summarise BMI or WHtR (multiplied by 100) at the age of 36 years and their subsequent rates of change over age.Results:Physical activity at the age of 36 years attenuated the GRS associations with BMI and WHtR at the same age (P-interaction 0.009 and 0.004, respectively). Further, physical activity at the age of 53 years attenuated the GRS association with rate of change in BMI between 53 and 63 years of age (by 0.012 kg m(-2) per year (95% confidence interval (CI): 0.001, 0.024), P-interaction 0.004). Conversely, smoking at the age of 43 years showed a trend towards augmenting the GRS association with rate of change in WHtR between 43 and 63 years of age (by 0.012 (95% CI: 0.001, 0.026), P-interaction 0.07). Estimated GRS effect sizes were lowest at all ages in the healthiest group (e.g., active non-smokers).Conclusions:Healthy lifestyle behaviours appeared to attenuate the genetic influence on changes across age in BMI and central adiposity during mid-adulthood. An active lifestyle and not smoking may have additive effects on reducing the genetic susceptibility to obesity in adults.
    Nutrition & Diabetes 09/2014; 4:e136. DOI:10.1038/nutd.2014.33 · 1.52 Impact Factor
  • Source

Full-text (2 Sources)

Download
44 Downloads
Available from
May 20, 2014