Article

Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation.

Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, St. Luke's Campus, Magdalen Road, Exeter, Devon, UK.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 08/2010; 1203:146-50. DOI: 10.1111/j.1749-6632.2010.05556.x
Source: PubMed

ABSTRACT Blood concentrations of hydrogen sulfide (H(2)S) are markedly elevated in several animal models of inflammation. Pharmacological inhibition of H(2)S synthesis reduces inflammation and swelling, suggesting that H(2)S is a potential inflammatory mediator. However, it is currently unknown whether H(2)S synthesis is perturbed in human inflammatory conditions or whether H(2)S is present in synovial fluid. We analyzed paired plasma and synovial fluid (SF) aspirates from rheumatoid arthritis (RA; n= 20) and osteoarthritis (OA; n= 4) patients and plasma from age matched healthy volunteers (n= 20). Median plasma H(2)S concentrations from healthy volunteers and RA and OA patients were 37.6, 36.6, and 37.6 microM, respectively. In RA patients, median synovial fluid H(2)S levels (62.4 microM) were significantly higher than paired plasma (P= 0.002) and significantly higher than in synovial fluid from OA patients (25.1 microM; P= 0.009). SF H(2)S levels correlated with clinical indices of disease activity (tender joint count, r= 0.651; P < 0.05) and markers of chronic inflammation; Europhile count (r=-0.566; P < 0.01) and total white cell count (r=-0.703; P < 0.01). Our study shows for the first time that H(2)S is present in synovial fluid and levels correlated with inflammatory and clinical indices in RA patients.

1 Bookmark
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulfide (H2S), the third gassotransmiter together with NO and CO, is emerging as a regulator of inflammation. To test if it might offer therapeutic value in the treatment of osteoarthritis (OA) we evaluated the effects of two exogenous sources of H2S, NaSH and GYY4137, on inflammation and catabolic markers that characterize OA. Human chondrocytes were isolated from OA tissue. Cells were stimulated with a pro-inflammatory cytokine (interleukin-1β, IL1β, 5ng/ml) and the ability of the two H2S sources to ameliorate its effects on the cells was tested. Nitric oxide (NO) production was quantified through the Griess reaction. Protein levels of inducible NO synthase (NOS2) and matrix metalloproteinase 13 (MMP13) were visualized through immunocytochemistry. Relative mRNA expression was quantified with qRT-PCR. Prostaglandin-2 (PGE-2), interleukin 6 (IL6) and MMP13 levels were measured with specific EIAs. NFκB nuclear traslocation was visualized with immunofluorescence. Both H2S sources led to significant reductions in NO, PGE-2, IL6 and MMP13 released by the cells and at the protein level. This was achieved by downregulation of relevant genes involved in the synthesis routes of these molecules, namely NOS2, cyclooxigenase-2 (COX2), prostaglandin E synthase (PTGES), IL6 and MMP13. NFκB nuclear traslocation was also reduced. NaSH and GYY4137 show anti-inflammatory and anti-catabolic properties when added to IL1β activated osteoarthritic chondrocytes. Supplementation with exogenous H2S sources can regulate the expression of relevant genes in osteoarthritis pathogenesis and progression, counteracting IL1β pro-inflammatory signals that lead to cartilage destruction in part by reducing NFκB activation.
    Osteoarthritis and Cartilage 05/2014; · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Together with carbon monoxide (CO), nitric oxide (̇NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the "gaseous triumvirate". The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.g. ischemia-reperfusion injury). In addition, they have complex roles in inflammation, with both pro- and anti-inflammatory effects reported. Researchers have focused their efforts in understanding and describing the roles of each of these molecules in different physiological systems, and in the past years attention has also been given to the gases interaction or "cross-talk". This review will focus on the role of ̇NO and H2S in inflammation and will give an overview of the evidence collected so far suggesting the importance of their cross-talk in inflammatory processes.
    Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A naphthalimide-azide based colorimetric and ratiometric fluorescent probe, NAP-1, has been developed for the selective and sensitive detection of hydrogen sulphide. Advantages of the probe NAP-1 include a low detection limit (110 nM), good selectivity, high sensitivity and excellent photostability. A linear relationship between the emission intensity ratios and sulphide concentrations was observed in PBS buffer and bovine serum, respectively. Our probe facilitates ratiometric determination and imaging of endogenous H2S in living cells. Furthermore, this probe was successfully applied to the measurement of endogenous sulphide in human plasma and mouse hippocampus. A significant reduction in sulphide levels and CBS mRNA expression was observed in the hippocampus of mouse models of lipopolysaccharide-induced neuroinflammation-related diseases, suggesting that decreased levels of endogenous H2S might be involved in the pathogenesis of neuroinflammation-related neurodegenerative diseases.
    Organic & Biomolecular Chemistry 05/2014; · 3.57 Impact Factor