Isolation of equine bone marrow-derived mesenchymal stem cells: A comparison between three protocols

Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada.
Equine Veterinary Journal (Impact Factor: 2.37). 09/2010; 42(6):519-27. DOI: 10.1111/j.2042-3306.2010.00098.x
Source: PubMed


REASON FOR PERFORMING THE STUDY: There is a need to assess and standardise equine bone marrow (BM) mesenchymal stem cell (MSC) isolation protocols in order to permit valid comparisons between therapeutic trials at different sites.
To compare 3 protocols of equine BM MSC isolation: adherence to a plastic culture dish (Classic) and 2 gradient density separation protocols (Percoll and Ficoll).
BM aspirates were harvested from the sternum of 6 mares and MSCs isolated by all 3 protocols. The cell viability after isolation, MSC yield, number of MSCs attained after 14 days of culture and the functional characteristics (self-renewal (CFU) and multilineage differentiation capacity) were determined for all 3 protocols.
The mean +/- s.d. MSC yield from the Percoll protocol was significantly higher (6.8 +/- 3.8%) than the Classic protocol (1.3 +/- 0.7%). The numbers of MSCs recovered after 14 days culture per 10 ml BM sample were 24.0 +/- 12.1, 14.6 +/- 9.5 and 4.1 +/- 2.5 x 10(6) for the Percoll, Ficoll and Classic protocols, respectively, significantly higher for the Percoll compared with the Classic protocol. Importantly, no significant difference in cell viability or in osteogenic or chondrogenic differentiation was identified between the protocols. At Passage 0, cells retrieved with the Ficoll protocol had lower self-renewal capacity when compared with the Classic protocol but there was no significant difference between protocols at Passage 1. There were no significant differences between the 3 protocols for the global frequencies of CFUs at Passage 0 or 1.
These data suggest that the Percoll gradient density separation protocol was the best in terms of MSC yield and self-renewal potential of the MSCs retrieved and that MSCs retrieved with the Ficoll protocol had the lowest self-renewal but only at passage 0. Then, the 3 protocols were equivalent. However, the Percoll protocol should be considered for equine MSC isolation to minimise culture time.

Download full-text


Available from: Celine Bourzac, Sep 17, 2015
  • Source
    • "The stromal compartment of bone marrow was the first source reported to contain MSCs (Fortier et al., 1998; Pittenger et al., 1999). For this reason, MSCs applied in tissue regeneration are still mainly isolated from this source and then amplified in vitro, following separation via plastic adherence (Bourzac et al., 2010). Furthermore, in regenerative medicine MSCs are frequently inoculated in association with Platelet Rich Plasma (PRP), a platelet concentrate able to improve tissue physiologic healing and return to function through the release of specific growth factors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of Mesenchymal Stromal Cells (MSCs) in orthopedic practice has recently and rapidly acquired an important role. Therapies based on the use of MSCs for the treatment of acute injuries as well as chronic inflammatory disorders are gradually becoming clinical routine. These cells have demonstrated intriguing therapeutic potentialities (i.e.: inflammation control, tissue regeneration and pathological scar prevention), that have been taken into consideration for use in both human and veterinary medicine. In particular, horses represent high performance athletes considered models for human pathologies since musculo-skeletal disorders frequently occur in this species. In the past, repair of tendon injures were performed by different methods. In particular, clinical therapy was based on ice application, bandage, box rest and controlled exercise. An alternative approach consisted on the use of corticosteroid (inflammation reduction) and other drugs (sodium hyaluronate, polysulphated glycosaminoglycans, beta aminoproprionitrile fumarate). Furthermore, surgical treatments like accessory ligament desmotomy, local irritation by line firing or pin firing were commonly used. More recently ultrasound, laser therapy, electromagnetic field therapy have been considered. Unfortunately, they did not allow complete tissue healing and quite often animals did not regain competitiveness. In order to minimize this inconvenience, the use of MSCs has been introduced as an alternative to the traditional approach since it represents a potential tool to improve tissue regeneration. Aim of this study was to evaluate the capability of MSCs to improve the functional outcome of horses affected by tendonitis and desmitis. Thirty-three breed and activity-matched horses affected by tendonitis or desmitis, were included in clinical trial scored for lesions and subdivided into two groups. Group 1 animals were treated with autologous MSCs, associated with platelet rich plasma (group 1). Bone marrow samples were collected from the sternum of the treated horses and processed in order to isolate MSCs. Following cell therapy, they were subjected to a rehabilitation period and their ability to resume training was evaluated. In this study, implanted MSCs caused no adverse reactions and thirteen out of the eighteen inoculated horses returned to race competitions. On the contrary, no improvement was seen in the twelve animals of group 2 treated with pin firing, that were not able to resume sport activity. In conclusion the clinical trial proves the safety of equine bone-marrow derived MSCs and a successful outcome of the treated animals that returned to their previous level of sport activity.
    Research in Veterinary Science 02/2013; 95(1). DOI:10.1016/j.rvsc.2013.01.017 · 1.41 Impact Factor
  • Source
    • "However arginase I was not detected in equine neutrophils isolated from peripheral blood using identical procedures, suggesting that equine and human neutrophils differ regarding their arginase isoform expression pattern. Arginase I mRNA was also undetected in both the mononuclear and polymorphonuclear cellular fractions isolated from equine bone marrow aspirates (not shown, n = 2) (Bourzac et al., 2010) as well as in neutrophil-rich BALF cells isolated from heaves-affected horses (n = 4, not shown). Arginase II mRNA was however detected in these cells suggesting that arginase I is not expressed by either myeloid or lymphoid cells in horses while arginase II is constitutively expressed in both cell lineages from early developmental stages. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophils are the predominant cells recruited in the airways of horses suffering from heaves. These cells have been shown to express arginase in some species. The metabolism of L-arginine is thought to be involved in chronic inflammation, and airway obstruction and remodeling. The aim of this study was to assess the expression, regulation, activity, and functional role of arginase isoforms in equine neutrophils. Arginase I, arginase II, ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) expression were assessed in resting and stimulated (IL-4, LPS/fMLP, PMA; 5 and 18 h) blood neutrophils using quantitative PCR. Arginase expression was also studied by western blot and enzyme activity assay. The effect of nor-NOHA (1 mM), a specific arginase inhibitor, was assessed on arginase activity in vitro and ex vivo on neutrophil's inflammatory gene expression and viability. Results showed that equine neutrophils constitutively express arginase isoform 2,ODC and OAT. Neutrophil ex vivo stimulation did not induce arginase I nor influence arginase II mRNA expression. Ex vivo inhibition of arginase activity by nor-NOHA had no effect on neutrophils inflammatory gene expression induced by LPS/fMLP (5 h) but significantly reversed the cell loss observed after this stimulation.
    Veterinary Immunology and Immunopathology 01/2013; 157(3-4). DOI:10.1016/j.vetimm.2013.12.007 · 1.54 Impact Factor
  • Source
    • "Such surface markers would supplement and alleviate cell characterization and, even more importantly, would enable effective techniques for cell selection (immunomagnetic or fluorescence activated cell sorting). However, as long as an identifying antibody panel for equine MSC is not established, plastic adherence of colony-forming cells and trilineage differentiation capacity, should be regarded as minimal but adequate criteria for the identification of equine MSC [55,84]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale. These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells (MSC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue regeneration. The aim of this study was to isolate and characterize equine periodontal MSC. Tissue samples were obtained from four healthy horses. Primary cell populations were harvested and cultured from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and typical in vitro characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of stemness markers and trilineage differentiation were analyzed. Colony-forming cell populations from all locations showed expression of the stemness markers CD90 and CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential into osteogenic, adipogenic and chondrogenic lineages. Due to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC (eSc-MSC), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels, eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic and periodontal diseases.
    BMC Veterinary Research 08/2011; 7(1):42. DOI:10.1186/1746-6148-7-42 · 1.78 Impact Factor
Show more