Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.
Journal of the American Chemical Society (Impact Factor: 10.68). 09/2010; 132(35):12210-1. DOI: 10.1021/ja1051632
Source: PubMed

ABSTRACT Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) enable the survival of organisms living in subfreezing habitats and serve as preservatives. Although their function is known, the underlying molecular mechanism was not understood. Mutagenesis experiments questioned the previous assumption of hydrogen bonding as the dominant mechanism. We use terahertz spectroscopy to show that antifreeze activity is directly correlated with long-range collective hydration dynamics. Our results provide evidence for a new model of how AFGPs prevent water from freezing. We suggest that antifreeze activity may be induced because the AFGP perturbs the aqueous solvent over long distances. Retarded water dynamics in the large hydration shell does not favor freezing. The complexation of the carbohydrate cis-hydroxyl groups by borate suppresses the long-range hydration shell detected by terahertz absorption. The hydration dynamics shift toward bulk water behavior strongly reduces the AFGP antifreeze activity, further supporting our model.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as -26°C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0-3mg/mL in Unisol base mixed with 1M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9°C) when compared to single DAFPs and/or conventional 1M Me2SO control solutions. Concentrations of DAFPs as low as 1μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.
    Cryobiology 01/2014; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules.
    Proceedings of the National Academy of Sciences 01/2013; · 9.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microwave-assisted solid-phase synthesis allows for the rapid and large-scale preparation and structure-activity characterization of tandem repeating glycopeptides, namely monodispersed synthetic antifreeze glycopeptides (syAFGPs, H-[Ala-Thr(Galβ1,3GalNAcα1→)-Ala] -OH, n=2-6). By employing novel AFGP analogues, we have demonstrated that of the monodispersed syAFGP (n=2-6, degree of polymerization, DP=2-6, M =1257-3690 Da), syAFGP (DP=5, M =3082 Da) and syAFGP (DP=6, M =3690 Da) exhibit the ability to form typical hexagonal bipyramidal ice crystals and satisfactory thermal hysteresis activity. Structural characterization by NMR and CD spectroscopy revealed that syAFGP forms a typical poly-L-proline type II helix-like structure in aqueous solution whereas enzymatic modification by sialic acid of the residues at the C-3 positions of the nonreducing Gal residues disturbs this conformation and eliminates the antifreeze activity.
    Chemistry 03/2013; 19(12):3913-20. · 5.93 Impact Factor