Article

Electrosorption/Electrodesorption of Arsenic on a Granular Activated Carbon in the Presence of Other Heavy Metals

Division of Engineering, Box D, Brown University, Providence, RI 02912, USA.
Energy & Fuels (Impact Factor: 2.73). 06/2010; 24(6):3415-3421. DOI: 10.1021/ef901542q
Source: PubMed

ABSTRACT The adsorption, electrosorption, and electrodesorption of aqueous, inorganic arsenic on the granular activated carbon (GAC), DARCO((R)) 12x20 GAC was investigated in solutions containing arsenic as the only contaminant, as well as with chromium, nickel and iron. Darco 1220 was selected for these investigations primarily because it is relatively ineffective as a normal (unassisted) arsenic adsorbent in the chosen electrolytes at the low loadings used. It is shown that the application of anodic potentials in the 1.0 - 1.5V range, however, result in enhanced uptake, most probably due to charging of the electrochemical double-layer at the electrode surface. 100% regeneration of electrosorbed arsenic was achieved via electrodesorption at a cathodic potential of 1.50V. The presence of ad-metal ions was observed to have a significant and complex effect on arsenic adsorption, electrosorption, and electrodesorption. In particular, the Cr:As ratio was shown to have complex effects, decreasing adsorption uptake when present as 3:2, but enhancing adsorption when present as 5:1. Nickel was found to have less of an effect than chromium except at the highest anodic potential used of 1.50V, where it exhibited better performance than chromium. The presence of iron significantly enhanced uptake. With a 1.50V anodic potential, the bulk arsenic concentration was reduced to less than detectable limits, well below the USEPA MCL for drinking water. Regeneration efficiency by electrodesorption for the As-Fe system was greater than about 90%.

0 Bookmarks
 · 
133 Views

Full-text (2 Sources)

Download
19 Downloads
Available from
Sep 16, 2014