Article

Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.

Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Nature medicine (Impact Factor: 28.05). 09/2010; 16(9):1035-41. DOI: 10.1038/nm.2198
Source: PubMed

ABSTRACT A major limitation of cell therapies is the rapid decline in viability and function of the transplanted cells. Here we describe a strategy to enhance cell therapy via the conjugation of adjuvant drug-loaded nanoparticles to the surfaces of therapeutic cells. With this method of providing sustained pseudoautocrine stimulation to donor cells, we elicited marked enhancements in tumor elimination in a model of adoptive T cell therapy for cancer. We also increased the in vivo repopulation rate of hematopoietic stem cell grafts with very low doses of adjuvant drugs that were ineffective when given systemically. This approach is a simple and generalizable strategy to augment cytoreagents while minimizing the systemic side effects of adjuvant drugs. In addition, these results suggest therapeutic cells are promising vectors for actively targeted drug delivery.

0 Followers
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based "live" targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems.
    03/2015; DOI:10.1021/ab500179h
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in nanotechnology have resulted in the introduction of new materials for therapeutic and diagnostic purposes. In particular, DNA and RNA are viewed as representative and generic nano-blocks because of their physiochemical characteristics of specificity and nanoscopic-level accuracy. In addition, the intrinsic biocompatibility of DNA and RNA and their immune stimulation effects make these molecules ideal candidates for the rational design of novel bio-drug molecules. Recently, we reported novel RNA-DNA hybrid stem-loop structures that target and are endocytosed by LNCaP prostate cancer cells with high specificity. To effectively ligate the DNA and RNA modules in this research, we thoroughly evaluated and optimized several ligation parameters, and observed that we could enhance the ligation efficacy by changing the overhang sequences. A change in sequence information (GCAT) resulted in a 4-fold increase in ligation efficiency in comparison with other ligation factors. To determine the in vitro cellular targeting ability of the nanostructures, RNA-DNA hybrid constructs were complexed with gold nanorods (AuNRs), and the ability of these nanorods to target prostate cancer cells was highest at a 2:10 molar ratio of LNCaP cancer-specific looped A10 RNA to stem-DNA. Furthermore, doxorubicin (Dox) as a representative anti-prostate cancer therapeutic was loaded into the DNA-RNA hybrid nanostructures. Our results indicate that RNA-DNA hybrid constructs are effective anti-prostate cancer drug delivery platforms and can be employed for both discovery and delivery.
    01/2014; 2(1):76. DOI:10.1039/c3bm60136f
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Use of live cells as carriers for drug-laden particulate structures possesses unique advantages for drug delivery. In this work, we report on the development of a novel type of particulate structures called microdevices for cell-borne drug delivery. The microdevices were fabricated by soft lithography with a disk-like shape. Each microdevice was composed a layer of biodegradable thermoplastic such as poly(lactic-co-glycolic acid). One face of the thermoplastic layer was covalently grafted with a cell-adhesive polyelectrolyte such as poly-L-lysine. This asymmetric structure allowed the microdevices to bind to live cells through bulk mixing without causing cell aggregation. Moreover, the cell-microdevice complexes were largely stable, and the viability and proliferation ability of the cells were not affected by the microdevices over a week. In addition, sustained release of a mock drug from the microdevices was demonstrated. This type of microdevices promises to be clinically useful for sustained intravascular drug delivery.
    ACS Applied Materials & Interfaces 03/2015; DOI:10.1021/acsami.5b00613 · 5.90 Impact Factor

Full-text (2 Sources)

Download
89 Downloads
Available from
Jun 3, 2014