Article

Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells.

Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstrasse 18, CH-8093 Zurich, Switzerland.
Nature Cell Biology (Impact Factor: 20.06). 09/2010; 12(9):886-93. DOI: 10.1038/ncb2092
Source: PubMed

ABSTRACT When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A-B55alpha complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A-B55alpha functions downstream of Cdk1 inactivation. PP2A-B55alpha isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-beta1, and RNAi depletion of importin-beta1 delayed mitotic exit synergistically with PP2A-B55alpha. This demonstrates that PP2A-B55alpha and importin-beta1 cooperate in the regulation of postmitotic assembly mechanisms in human cells.

2 Followers
 · 
178 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Keratinocytes proliferation is critical for the capacity to heal wounds and accumulating evidences have proved that dysregulation of microRNAs is involved in proliferation of keratinocytes. However, the molecular mechanisms remain to be completely elucidated. Here, we show that miR-136 was significantly decreased by TGF-β1 treatment in HaCaT cells and normal human epidermal keratinocytes (NHEK), and it was a Smad3-dependent manner. By cell proliferation assay and cell cycle analysis, we found that reintroduction of miR-136 by transfection, as well as PPP2R2A silencing, counteracted TGF-β-induced proliferation arrest in HaCaT cells. Further, PPP2R2A was verified as a direct target of miR-136 by dual-luciferase reporter assays and Western blotting. These data suggest that miR-136 may play an important role during TGF-β1-induced proliferation arrest by targeting PPP2R2A in keratinocytes, which might represent a potential target for improving skin wound healing.
    BioMed Research International 01/2015; 2015:453518. DOI:10.1155/2015/453518 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel ( Flfl), directly interacts with the centromeric protein C ( CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis.
    Nature Communications 01/2015; 6. DOI:10.1038/ncomms6894 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When cells enter mitosis, the anaphase-promoting complex/cyclosome (APC/C) is activated by phosphorylation and binding of Cdc20. The RXXL destruction box (D-box) of cyclin B1 only binds Cdc20 after release of the spindle checkpoint in metaphase, initiating cyclin B1 ubiquitination upon chromosome bi-orientation. However, we found that cyclin B1, through Cdk1 and Cks, is targeted to the phosphorylated APC/C(Cdc20) at the start of prometaphase, when the spindle checkpoint is still active. Here, we show that MASTL is essential for cyclin B1 recruitment to the mitotic APC/C and that this occurs entirely independently of Cdc20. Importantly, MASTL-directed binding of cyclin B1 to spindle checkpoint-inhibited APC/C(Cdc20) critically supports efficient cyclin B1 destruction after checkpoint release. A high incidence of anaphase bridges observed in response to MASTL RNAi may result from cyclin B1 remaining after securin destruction, which is insufficient to keep MASTL-depleted cells in mitosis but delays the activation of separase. © 2015. Published by The Company of Biologists Ltd.

Full-text (2 Sources)

Download
64 Downloads
Available from
Jun 5, 2014