Osteoblast Precursors, but Not Mature Osteoblasts, Move into Developing and Fractured Bones along with Invading Blood Vessels

Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
Developmental Cell (Impact Factor: 10.37). 08/2010; 19(2):329-44. DOI: 10.1016/j.devcel.2010.07.010
Source: PubMed

ABSTRACT During endochondral bone development, the first osteoblasts differentiate in the perichondrium surrounding avascular cartilaginous rudiments; the source of trabecular osteoblasts inside the later bone is, however, unknown. Here, we generated tamoxifen-inducible transgenic mice bred to Rosa26R-LacZ reporter mice to follow the fates of stage-selective subsets of osteoblast lineage cells. Pulse-chase studies showed that osterix-expressing osteoblast precursors, labeled in the perichondrium prior to vascular invasion of the cartilage, give rise to trabecular osteoblasts, osteocytes, and stromal cells inside the developing bone. Throughout the translocation, some precursors were found to intimately associate with invading blood vessels, in pericyte-like fashion. A similar coinvasion occurs during endochondral healing of bone fractures. In contrast, perichondrial mature osteoblasts did not exhibit perivascular localization and remained in the outer cortex of developing bones. These findings reveal the specific involvement of immature osteoblast precursors in the coupled vascular and osteogenic transformation essential to endochondral bone development and repair.

Download full-text


Available from: Sanford Irwin Roth, Apr 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.
    Journal of Anatomy 09/2014; 225(5). DOI:10.1111/joa.12235 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes EXT1 and EXT2 induce the Multiple Osteochondroma Syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.
    Matrix biology: journal of the International Society for Matrix Biology 12/2013; 35. DOI:10.1016/j.matbio.2013.11.003 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mature osteoblasts are the cells responsible for bone formation and are derived from precursor osteoblasts. However, the mechanisms that control this differentiation are poorly understood. In fact, unlike the majority of organs in the body, which are composed of "soft" tissue from which cells can easily be isolated and studied, the "hard" mineralized tissue of bone has made it difficult to study the function of bone cells. Here, we established an in vitro model that mimics this differentiation under physiological conditions. We obtained mature osteoblasts and characterized them on the basis of the following parameters: the strong expression of osteoblastic markers, such as Runx2 and Col-I; the achievement of specific dimensions (the cell volume increases 26-fold compared to the osteoblast precursors); and the production of an abundant extracellular matrix also called osteoid. We demonstrated that the differentiation of osteoblast precursors into mature osteoblasts requires the continuous activation of Bone Morphogenetic Protein (BMP) receptors, which we established with the immobilization of a BMP-2mimetic peptide on a synthetic matrix mimicking in vivo microenvironment. Importantly, we demonstrated that the organization of the F-actin network and acetylated microtubules of the cells were modified during the differentiation process. We showed that the perturbation of the F-actin cytoskeleton organization abolished the differentiation process. In addition, we demonstrated that expression of the Runx2 gene is required for this differentiation. These findings demonstrate the retro-regulation of cytoplasmic and genic components due to the continuous induction of BMP-2 and also provide more detailed insights into the correct signaling of BMPs for cell differentiation in bone tissue.
    09/2013; 2(9):872-81. DOI:10.1242/bio.20134986