Postoperative intra-abdominal collections using a sodium hyaluronate-carboxymethylcellulose (HA-CMC) barrier at the time of laparotomy for uterine or cervical cancers.

Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Gynecologic Oncology (Impact Factor: 3.93). 11/2010; 119(2):208-11. DOI: 10.1016/j.ygyno.2010.07.027
Source: PubMed

ABSTRACT A prior analysis of patients undergoing laparotomy for ovarian malignancies at our institution revealed an increased rate of intra-abdominal collections using HA-CMC film during debulking surgery. The primary objective of the current study was to determine whether the use of HA-CMC is associated with the development of postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical malignancies.
We retrospectively identified all laparotomies performed for these malignancies from 3/1/05 to 12/31/07. We identified cases involving the use of HA-CMC via billing records and operative reports. Intra-abdominal collections were defined as localized intraperitoneal fluid accumulations in the absence of re-accumulating ascites. We noted incidences of intra-abdominal collections, as well as other complications. Appropriate statistical tests were applied using SPSS 15.0.
We identified 169 laparotomies in which HA-CMC was used and 347 in which HA-CMC was not used. The following were statistically similar in both cohorts: age, body mass index (BMI), primary site, surgery for recurrent disease, prior intraperitoneal surgery, and extent of current surgery. Intra-abdominal collections were seen in 6 (3.6%) of 169 HA-CMC cases compared to 10 (2.9%) of 347 non-HA-CMC cases (p=0.7). The rate of infected collections was similar in both groups (1.2% vs. 1.4%). In the subgroup that underwent tumor debulking, intra-abdominal collections were seen in 3 (11.5%) of 26 HA-CMC cases compared to 2 (5.4%) of 37 non-HA-CMC cases (p=0.6).
HA-CMC use does not appear to be associated with postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyaluronic acid is a prognostic factor in ovarian cancers. It is also a component of Hyaluronic Acid-Carboxymethyl Cellulose (HA-CMC) barrier, an anti-adhesion membrane widely used during abdominal surgeries in particular for ovarian carcinosis. 70% of patients who undergo ovarian surgery will relapse due to the persistence of cancer cells. This study's objective was to determine the oncological risk from use of this material, in the presence of residual disease, despite the benefit gained by it decreasing post-surgical adhesions in order to provide an unambiguous assessment of its appropriateness for use in ovarian surgical management. We assessed the effects of HA-CMC barrier on the in vitro proliferation of human ovarian tumor cell lines (OVCAR-3, IGROV-1 and SKOV-3). We next evaluated, in vivo in nude mice, the capacity of this biomaterial to regulate the tumor progression of subcutaneous and intraperitoneal models of ovarian tumor xenografts. We showed that HA-CMC barrier does not increase in vitro proliferation of ovarian cancer cell lines compared to control. In vivo, HA-CMC barrier presence with subcutaneous xenografts induced neither an increase in tumor volume nor cell proliferation (Ki67 and mitotic index). With the exception of an increased murine carcinosis score in peritoneum, the presence of HA-CMC barrier with intraperitoneal xenografts modified neither macro nor microscopic tumor growth. Finally, protein analysis of survival (Akt), proliferation (ERK) and adhesion (FAK) pathways highlighted no activation on the xenografts imputable to HA-CMC barrier. For the most part, our results support the lack of tumor progression activation due to HA-CMC barrier. We conclude that the benefits gained from using HA-CMC barrier membrane during ovarian cancer surgeries seem to outweigh the potential oncological risks.
    Journal of Ovarian Research 04/2014; 7(1):40. · 2.43 Impact Factor