Article

Regulation of Tumor Angiogenesis by EZH2

Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX 77030, USA.
Cancer cell (Impact Factor: 23.89). 08/2010; 18(2):185-97. DOI: 10.1016/j.ccr.2010.06.016
Source: PubMed

ABSTRACT Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we show that increased Zeste homolog 2 (EZH2) expression in either tumor cells or in tumor vasculature is predictive of poor clinical outcome. The increase in endothelial EZH2 is a direct result of VEGF stimulation by a paracrine circuit that promotes angiogenesis by methylating and silencing vasohibin1 (vash1). Ezh2 silencing in the tumor-associated endothelial cells inhibited angiogenesis mediated by reactivation of VASH1, and reduced ovarian cancer growth, which is further enhanced in combination with ezh2 silencing in tumor cells. Collectively, these data support the potential for targeting ezh2 as an important therapeutic approach.

Download full-text

Full-text

Available from: Robert L Coleman, Jun 24, 2015
0 Followers
 · 
315 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumour cells associated with therapy resistance (radioresistance and drug resistance) are likely to give rise to local recurrence and distant metastatic relapse. Recent studies revealed microRNA (miRNA)-mediated regulation of metastasis and epithelial-mesenchymal transition; however, whether specific miRNAs regulate tumour radioresistance and can be exploited as radiosensitizing agents remains unclear. Here we find that miR-205 promotes radiosensitivity and is downregulated in radioresistant subpopulations of breast cancer cells, and that loss of miR-205 is highly associated with poor distant relapse-free survival in breast cancer patients. Notably, therapeutic delivery of miR-205 mimics via nanoliposomes can sensitize the tumour to radiation in a xenograft model. Mechanistically, radiation suppresses miR-205 expression through ataxia telangiectasia mutated (ATM) and zinc finger E-box binding homeobox 1 (ZEB1). Moreover, miR-205 inhibits DNA damage repair by targeting ZEB1 and the ubiquitin-conjugating enzyme Ubc13. These findings identify miR-205 as a radiosensitizing miRNA and reveal a new therapeutic strategy for radioresistant tumours.
    Nature Communications 12/2014; 5:5671. DOI:10.1038/ncomms6671 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is the most common pediatric extracranial solid tumor with a broad spectrum of clinical behavior and poor prognosis. Despite intensive multimodal therapy, ongoing clinical trials and basic science investigations, neuroblastoma remains a complex medical challenge with a long-term survival rate less than 40%. In our study, we found that resveratrol (3, 5, 4'-trihydroxystilbene, RSV), a naturally occurring phytoalexin, possesses an anticancer activity through blocking cell growth and inducing apoptosis in neuroblastoma cell line Neuro-2a (N-2a) cells. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative proteomic analysis, we found that 395 proteins were up-regulated and 302 proteins were down-regulated in the nucleus of N-2a cells treated with RSV. Among these, the polycomb protein histone methyltransferase EZH2 was reduced significantly, which is aberrantly overexpressed in neuroblastoma and crucial to maintain the malignant phenotype of neuroblastoma by epigenetic repression of multiple tumor suppressor genes. EZH2 reduction further led to decreased H3K27me3 level and reactivation of neuroblastoma tumor suppressor genes CLU and NGFR. Disruption EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibition with DZNep triggered cellular apoptosis in N-2a cells. We found that the up-regulation of miR-137 level was responsible for reduced EZH2 level in tumor suppression induced by RSV. Inhibition of miR-137 expression rescued the cellular apoptosis phenotypes, EZH2 reduction and CLU and NGFR reactivation, associated with RSV treatment. Taken together, our findings present for the first time, an epigenetic mechanism involving miR-137-mediated EZH2 repression in RSV-induced apoptosis and tumor suppression of neuroblastoma, which would provide a key potential therapeutic target in neuroblastoma treatment. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Molecular &amp Cellular Proteomics 12/2014; 14(2). DOI:10.1074/mcp.M114.041905 · 7.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Progress in Neurobiology 11/2014; DOI:10.1016/j.pneurobio.2014.11.001 · 10.30 Impact Factor