Enhanced tumor suppression in vitro and in vivo by co-expression of survivin-specific siRNA and wild-type p53 protein.

Department of Pathophysiology, Norman Bethune College of Medicine and Prostate Diseases Prevention and Treatment Research Center, Jilin University, Changchun, China.
Cancer gene therapy (Impact Factor: 2.55). 12/2010; 17(12):844-54. DOI: 10.1038/cgt.2010.41
Source: PubMed

ABSTRACT The development of malignant prostate cancer involves multiple genetic alterations. For example, alterations in both survivin and p53 are reported to have crucial roles in prostate cancer progression. However, little is known regarding the interrelationships between p53 and survivin in prostate cancer. Our data demonstrate that the expression of survivin is inversely correlated with that of wtp53 protein (r(s)=0.548) in prostate cancer and in normal prostate tissues. We have developed a therapeutic strategy, in which two antitumor factors, small interfering RNA-survivin and p53 protein, are co-expressed from the same plasmid, and have examined their effects on the growth of PC3, an androgen-independent prostate cancer cell line. When p53 was expressed along with a survivin-specific short hairpin RNA (shRNA), tumor cell proliferation was significantly suppressed and apoptosis occurred. In addition, this combination also abrogated the expression of downstream target molecules such as cyclin-dependent kinase 4 and c-Myc, while enhancing the expression of GRIM19. These changes in gene expression occurred distinctly in the presence of survivin-shRNA/wtp53 compared with control or single treatment groups. Intratumoral injection of the co-expressed construct inhibited the growth and survival of tumor xenografts in a nude mouse model. These studies revealed evidence of an interaction between p53 and survivin proteins plus a complex signaling network operating downstream of the wtp53-survivin pathway that actively controls tumor cell proliferation, survival and apoptosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 has been demonstrated to be a tumor suppressor. Current researches in vitro confirm that RBM5 can suppress the growth of lung adenocarcinoma cells by inducing apoptosis. There is still no effective model in vivo, however, that thoroughly investigates the effect and molecular mechanism of RBM5 on lung adenocarcinoma. METHOD: We established the transplanted tumor model on BALB/c nude mice using the A549 cell line. The mice were treated with the recombinant plasmids carried by attenuated Salmonella to induce the overexpression of RBM5 in tumor tissues. RBM5 overexpression was confirmed by immunohistochemistry staining. H&E staining was performed to observe the histological performance on plasmids-treated A549 xenografts. Apoptosis was assessed by TUNEL staining with a TUNEL detection kit. Apoptosis-regulated genes were detected by Western blot. RESULTS: We successful established the lung adenocarcinoma animal model in vivo. The growth of tumor xenografts was significantly retarded on the mice treated with pcDNA3.1-RBM5 carried by attenuated Salmonella compared to that on mice treated with pcDNA3.1. Overexpression of RBM5 enhanced the apoptosis in tumor xenografts. Furthermore, the expression of Bcl-2 protein was decreased significantly, while the expression of BAX, TNF-alpha, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and cleaved PARP proteins was significantly increased in the pcDNA3.1-RBM5-treated mice as compared to that in the control mice. CONCLUSIONS: In this study, we established a novel animal model to determine RBM5 function in vivo, and concluded that RBM5 inhibited tumor growth in mice by inducing apoptosis. The study suggests that although RBM5's involvement in the death receptor-mediated apoptotic pathway is still to be investigated, RBM5-mediated growth suppression, at least in part, employs regulation of the mitochondrial apoptotic pathways.
    World Journal of Surgical Oncology 05/2013; 11(1):123. DOI:10.1186/1477-7819-11-123 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic trioxide (As2O3) can induce apoptosis in many tumors. However, the associated mechanisms are not clearly understood. We found that As2O3 significantly inhibited the proliferation of WSU-CLL cells and induced apoptosis in dose- and time-dependent manners. WSU-CLL cells treated with 2μM As2O3 showed survivin down-regulation and p53 up-regulation. Survivin siRNA combined with As2O3 further inhibited the proliferation of WSU-CLL cells. p53 inhibition by siRNA prevented the down-regulation of survivin by As2O3 and prevented the As2O3-induced cytotoxicity of WSU-CLL cells. These results suggest that As2O3 may be of therapeutic value for chronic lymphocytic leukemia.
    Leukemia research 09/2013; DOI:10.1016/j.leukres.2013.09.019 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) often shows either mutations of the p53 gene or inactivation of the P53 protein. The latter may be due to up-regulation of mouse double minute 2 homologue (MDM2), which functions both as an E3 ubiquitin ligase to degrade P53 protein via the proteasome and an inhibitor of P53 transcriptional activation. Zinc plays a crucial role in stabilizing the P53 DNA binding domain, but PCa cells often lack the ability to accumulate sufficient zinc. In the present study, we explore the optimal approach to retention of P53 function. To restore the defective P53 pathway in PCa, we have explored a combined treatment of Pmp53 [a plasmid containing both mdm2 small interfering RNA (Si-MDM2) and the wild-type p53 gene] with zinc. This treatment retains the wild-type P53 conformation and function in PCa in vitro and in vivo. Combined treatments significantly inhibited tumour xenograft growth, retaining wild-type P53 conformation and enhancing its transcriptional regulation of p21 and bax gene expression, leading to the decreased proliferation and increased apoptosis. These in vivo findings were confirmed by in vitro culture of PCa PC-3 (p53 null) or DU145 (mutant p53) cells and showed a positive effect of the combined therapy on cell cycle arrest and massive apoptosis. Our findings suggest that the combined therapy of Pmp53 with zinc is an effective strategy that may open a new therapeutic avenue in some cancers expressing low levels of zinc and a defective P53 status.
    European journal of cancer (Oxford, England: 1990) 01/2014; DOI:10.1016/j.ejca.2013.12.027 · 4.82 Impact Factor