Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis

Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Annals of the rheumatic diseases (Impact Factor: 10.38). 01/2011; 70(1):74-9. DOI: 10.1136/ard.2010.130278
Source: PubMed


Meniscal tears have been linked to knee osteoarthritis progression, presumably by impaired load attenuation. How meniscal tears affect osteoarthritis is unclear; subregional examination may help to elucidate whether the impact is local. This study examined the association between a tear within a specific meniscal segment and subsequent 2-year cartilage loss in subregions that the torn segment overlies.
Participants with knee osteoarthritis underwent bilateral knee MRI at baseline and 2 years. Mean cartilage thickness within each subregion was quantified. Logistic regression with generalised estimating equations were used to analyse the relationship between baseline meniscal tear in each segment and baseline to 2-year cartilage loss in each subregion, adjusting for age, gender, body mass index, tear in the other two segments and extrusion.
261 knees were studied in 159 individuals. Medial meniscal body tear was associated with cartilage loss in external subregions and in central and anterior tibial subregions, and posterior horn tear specifically with posterior tibial subregion loss; these relationships were independent of tears in the other segments and persisted in tibial subregions after adjustment for extrusion. Lateral meniscal body and posterior horn tear were also associated with cartilage loss in underlying subregions but not after adjustment for extrusion. Cartilage loss in the internal subregions, not covered by the menisci, was not associated with meniscal tear in any segment.
These results suggest that the detrimental effect of meniscal tears is not spatially uniform across the tibial and femoral cartilage surfaces and that some of the effect is experienced locally.

Download full-text


Available from: Alison H. Chang,
    • "Various studies have found a strong correlation between meniscal tear and the development of knee osteoarthritis (OA) (Hunter et al. 2006; Sharma et al. 2008; Englund et al. 2009). Meniscal tear impairs the meniscus functions and subjects cartilages to focal axial and aberrant shear stresses (Chang et al. 2011). However, the detailed stress changes in the knee joint resulted by meniscal tear remain unclear. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.
    Computer Methods in Biomechanics and Biomedical Engineering 01/2013; 17(13). DOI:10.1080/10255842.2012.753063 · 1.77 Impact Factor
  • Source

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the longitudinal rate of (and sensitivity to) change of knee cartilage thickness across defined stages of radiographic osteoarthritis (OA), specifically healthy knees and knees with end-stage radiographic OA. One knee of 831 Osteoarthritis Initiative participants was examined: 112 healthy knees, without radiographic OA or risk factors for knee OA, and 719 radiographic OA knees (310 calculated Kellgren/Lawrence [K/L] grade 2, 300 calculated K/L grade 3, and 109 calculated K/L grade 4). Subregional change in thickness was assessed after segmentation of weight-bearing femorotibial cartilage at baseline and 1 year from coronal magnetic resonance imaging (MRI). Regional and ordered values (OVs) of change were compared by baseline radiographic OA status. Healthy knees displayed small changes in plates and subregions (±0.7%; standardized response mean [SRM] ±0.15), with OVs being symmetrically distributed close to zero. In calculated K/L grade 2 knees, changes in cartilage thickness were small (<1%; minimal SRM -0.22) and not significantly different from healthy knees. Knees with calculated K/L grade 3 showed substantial loss of cartilage thickness (up to -2.5%; minimal SRM -0.35), with OV1 changes being significantly (P < 0.05) greater than those in healthy knees. Calculated K/L grade 4 knees displayed the largest rate of loss across radiographic OA grades (up to -3.9%; minimal SRM -0.51), with OV1 changes also significantly (P < 0.05) greater than in healthy knees. MRI-based cartilage thickness showed high rates of loss in knees with moderate and end-stage radiographic OA, and small rates (indistinguishable from healthy knees) in mild radiographic OA. From the perspective of sensitivity to change, end-stage radiographic OA knees need not be excluded from longitudinal studies using MRI cartilage morphology as an end point.
    01/2010; 63(3):311-9. DOI:10.1002/acr.20370
Show more