Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes

Universidade Federal do Pará-UFPA, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Brazil.
European Journal of Neuroscience (Impact Factor: 3.67). 08/2010; 32(3):509-19. DOI: 10.1111/j.1460-9568.2010.07296.x
Source: PubMed

ABSTRACT Environmental and age-related effects on learning and memory were analysed and compared with changes observed in astrocyte laminar distribution in the dentate gyrus. Aged (20 months) and young (6 months) adult female albino Swiss mice were housed from weaning either in impoverished conditions or in enriched conditions, and tested for episodic-like and water maze spatial memories. After these behavioral tests, brain hippocampal sections were immunolabeled for glial fibrillary acid protein to identify astrocytes. The effects of environmental enrichment on episodic-like memory were not dependent on age, and may protect water maze spatial learning and memory from declines induced by aging or impoverished environment. In the dentate gyrus, the number of astrocytes increased with both aging and enriched environment in the molecular layer, increased only with aging in the polymorphic layer, and was unchanged in the granular layer. We suggest that long-term experience-induced glial plasticity by enriched environment may represent at least part of the circuitry groundwork for improvements in behavioral performance in the aged mice brain.

Download full-text


Available from: Daniel Guerreiro Diniz, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The old age population is increasing worldwide as well as age related diseases, including neurodegenerative disorders such as Alzheimer's disease (AD), which negatively impacts on the health care systems. Aging represents per se a risk factor for AD. Thus, the study and identification of pathways within the biology of aging represent an important end point for the development of novel and effective disease-modifying drugs to treat, delay, or prevent AD. Cellular senescence and telomere shortening represent suitable and promising targets. Several studies show that cellular senescence is tightly interconnected to aging and AD, while the role of telomere dynamic and stability in AD pathogenesis is still unclear. This review will focus on the linking mechanisms between cellular senescence, telomere shortening and AD. Copyright © 2015. Published by Elsevier B.V.
    Ageing Research Reviews 04/2015; 22. DOI:10.1016/j.arr.2015.04.003 · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical exercise and fitness have been proposed as potential factors that promote healthy cognitive aging. Some of the support for this hypothesis has come from animal research. Animal studies are also used to propose the physiological mechanisms underlying the cognitive performance improvement associated with exercise. In the present review and meta-analysis, we discuss several methodological problems that limit the contribution of animal studies to the understanding of the putative effects of exercise on cognitive aging. We suggest that the most likely measure to equate exercise intensity in rodent and humans may be oxygen consumption (VO2) because observed values are surprisingly similar in young and older rodents and humans. For practical reasons, several animal studies use young rodents kept in social isolation. We show that social isolation is associated with an enhanced impact of exercise on cognitive performance but not on some physiological measures thought to mediate the effect of exercise. Surprisingly, two months or more of exercise intervention appeared to be ineffective to promote cognitive performance compared to shorter durations. We argue that impact of exercise in socially isolated animals is explained by an alleviation of environmental impoverishment as much as an effect of physical exercise. It is possible that the introduction of exercise in rodents is partly mediated by environmental changes. It may explain why larger effects are observed for the shorter durations of exercise while much smaller effects are found after longer periods of exercise.
    Behavioural Brain Research 10/2014; 273:177 - 188. DOI:10.1016/j.bbr.2014.06.043 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homer1 belongs to a family of scaffolding proteins that interact with various post-synaptic density proteins including group I metabotropic glutamate receptors (mGluR1/5). Previous research in our laboratory implicates the Homer1c isoform in spatial learning. Homer1 knockout mice (H1-KO) display cognitive impairments, but their synaptic plasticity properties have not been described. Here, we investigated the role of Homer1 in long-term potentiation (LTP) in the hippocampal CA1 region of H1-KO mice in vitro. We found that late-phase LTP elicited by high frequency stimulation (HFS) was impaired, and that the induction and maintenance of theta burst stimulation (TBS) LTP were reduced in H1-KO. To test the hypothesis that Homer1c was sufficient to rescue these LTP deficits, we delivered Homer1c to the hippocampus of H1-KO using recombinant adeno-associated virus (rAAV). We found that rAAV-Homer1c rescued HFS and TBS-LTP in H1-KO animals. Next, we tested whether the LTP rescue by Homer1c was occurring via mGluR1/5. A selective mGluR5 antagonist, but not an mGluR1 antagonist, blocked the Homer1c-induced recovery of late-LTP, suggesting that Homer1c mediates functional effects on plasticity via mGluR5. To investigate the role of Homer1c in spatial learning, we injected rAAV-Homer1c to the hippocampus of H1-KO. We found that rAAV-Homer1c significantly improved H1-KO performance in the Radial Arm Water Maze. These results point to a significant role for Homer1c in synaptic plasticity and learning.
    Neurobiology of Learning and Memory 09/2011; 97(1):17-29. DOI:10.1016/j.nlm.2011.08.009 · 4.04 Impact Factor