Involvement of the human pedunculopontine nucleus region in voluntary movements.

Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Hospital, McLaughlin Pavilion, Toronto, Ontario M5T 2S8, Canada.
Neurology (Impact Factor: 8.3). 09/2010; 75(11):950-9. DOI: 10.1212/WNL.0b013e3181f25b35
Source: PubMed

ABSTRACT The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies.
We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements.
Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state.
Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracting event-related potentials (ERP) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP needn't conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5±6.5, 76.7±12.8, 90.0±4.1] and [92.6±6.3, 86.0±9.0, 29.8±12.3] (mean±1sd) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required.
    Journal of neuroscience methods 12/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pedunculopontine area (PPNa) including the pedunculopontine and cuneiform nuclei, belongs to the mesencephalic locomotor region. Little is known about the oscillatory mechanisms underlying the function of this region in postural and gait control. We examined the modulations of the oscillatory activity of the PPNa and cortex during stepping, a surrogate of gait, and stance in seven Parkinson's disease patients who received bilateral PPNa implantation for disabling freezing of gait (FOG). In the days following the surgery, we recorded behavioural data together with the local field potentials of the PPNa during sitting, standing and stepping-in-place, under two dopaminergic medication conditions (OFF and ON levodopa). Our results showed that OFF levodopa, all subjects had FOG during step-in-place trials, while ON levodopa, stepping was effective (mean duration of FOG decreasing from 61.7±36.1% to 7.3±10.1% of trial duration). ON levodopa, there was an increase in PPNa alpha (5-12 Hz) oscillatory activity and a decrease in beta (13-35 Hz) and gamma (65-90 Hz) bands activity. PPNa activity was not modulated during quiet standing and sitting. Our results confirm the role of the PPNa in the regulation of gait and suggest that, in Parkinson disease, gait difficulties could be related to an imbalance between low and higher frequencies.
    PLoS ONE 01/2013; 8(12):e83919. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson's disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.
    Journal of neural transmission (Vienna, Austria : 1996). 06/2014;

Full-text (2 Sources)

Available from
May 28, 2014