Article

Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons.

Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2010; 30(32):10927-38. DOI: 10.1523/JNEUROSCI.0657-10.2010
Source: PubMed

ABSTRACT B-type natriuretic peptide (BNP) has been known to be secreted from cardiac myocytes and activate its receptor, natriuretic peptide receptor-A (NPR-A), to reduce ventricular fibrosis. However, the function of BNP/NPR-A pathway in the somatic sensory system has been unknown. In the present study, we report a novel function of BNP in pain modulation. Using microarray and immunoblot analyses, we found that BNP and NPR-A were expressed in the dorsal root ganglion (DRG) of rats and upregulated after intraplantar injection of complete Freund's adjuvant (CFA). Immunohistochemistry showed that BNP was expressed in calcitonin gene-related peptide (CGRP)-containing small neurons and IB4 (isolectin B4)-positive neurons, whereas NPR-A was present in CGRP-containing neurons. Application of BNP reduced the firing frequency of small DRG neurons in the presence of glutamate through opening large-conductance Ca2+-activated K+ channels (BKCa channels). Furthermore, intrathecal injection of BNP yielded inhibitory effects on formalin-induced flinching behavior and CFA-induced thermal hyperalgesia in rats. Blockade of BNP signaling by BNP antibodies or cGMP-dependent protein kinase (PKG) inhibitor KT5823 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester] impaired the recovery from CFA-induced thermal hyperalgesia. Thus, BNP negatively regulates nociceptive transmission through presynaptic receptor NPR-A, and activation of the BNP/NPR-A/PKG/BKCa channel pathway in nociceptive afferent neurons could be a potential strategy for inflammatory pain therapy.

Download full-text

Full-text

Available from: Xiao-hui Zhang, Feb 14, 2014
0 Followers
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain essentially unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gα(i)-Gβγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is coexpressed in transient receptor potential vanilloid-1 (TRPV1)-expressing mouse dorsal root ganglia (DRG) neurons. NPR-C can be coimmunoprecipitated with Gα(i), and C-type natriuretic peptide (CNP) treatment induced translocation of protein kinase Cε (PKCε) to the plasma membrane of these neurons, which was inhibited by pertussis toxin pretreatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons and increased their firing frequency, an effect that was absent in DRG neurons from TRPV1(-/-) mice. CNP-induced sensitization of TRPV1 activity was attenuated by pretreatment of DRG neurons with the specific inhibitors of Gβγ, phospholipase C-β (PLCβ), or PKC, but not of protein kinase A, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Furthermore, CNP injection into mouse hindpaw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gβγ or TRPV1 and was also absent in TRPV1(-/-) mice. Thus, our work identifies the Gβγ-PLCβ-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 08/2012; 32(35):11942-55. DOI:10.1523/JNEUROSCI.1330-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence suggests that the suppressive modulators released from nociceptive afferent neurons contribute to pain regulation. However, the suppressive modulators expressed in small-diameter neurons of the dorsal root ganglion remain to be further identified. The present study shows that the activin C expressed in small dorsal root ganglion neurons is required for suppressing inflammation-induced nociceptive responses. The expression of activin C in small dorsal root ganglion neurons of rats was markedly downregulated during the early days of peripheral inflammation induced by intraplantar injection of the complete Freund's adjuvant. Intrathecal treatment with the small interfering RNA targeting activin βC or the antibodies against activin C could enhance the formalin-induced nociceptive responses, and impair the recovery from the complete Freund's adjuvant-induced thermal hyperalgesia. Intrathecally applied activin C could reduce nociceptive responses induced by formalin or complete Freund's adjuvant. Moreover, activin C was found to inhibit the inflammation-induced phosphorylation of extracellular signal-regulated kinase in the dorsal root ganglia and the dorsal spinal cord. Thus, activin C functions as an endogenous suppressor of inflammatory nociceptive transmission and may have a therapeutic potential for treatment of inflammatory pain.
    Brain 02/2012; 135(Pt 2):391-403. DOI:10.1093/brain/awr350 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Existing microarray gene expression profiling studies of tonic/chronic pain were subjected to meta-analysis to identify genes found to be regulated by these pain states in multiple, independent experiments. Twenty studies published from 2002 to 2008 were identified, describing the statistically significant regulation of 2254 genes. Of those, a total of 79 genes were found to be statistically significant "hits" in 4 or more independent microarray experiments, corresponding to a conservative P<0.01 overall. Gene ontology-based functional annotation clustering analyses revealed strong evidence for regulation of immune-related genes in pain states. A multi-gene quantitative real-time polymerase chain reaction experiment was run on dorsal root ganglion (DRG) and spinal cord tissue from rats and mice given nerve (sciatic chronic constriction; CCI) or inflammatory (complete Freund's adjuvant) injury. We independently confirmed the regulation of 43 of these genes in the rat-CCI-DRG condition; the genetic correlates in all other conditions were largely and, in some cases, strikingly, independent. However, a handful of genes were identified whose regulation bridged etiology, anatomical locus, and/or species. Most notable among these were Reg3b (regenerating islet-derived 3 beta; pancreatitis-associated protein) and Ccl2 (chemokine [C-C motif] ligand 2), which were significantly upregulated in every condition in the rat.
    Pain 05/2011; 152(8):1888-98. DOI:10.1016/j.pain.2011.04.014 · 5.84 Impact Factor