Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters.

HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4013, South Africa.
Journal of Virology (Impact Factor: 4.65). 10/2010; 84(20):10820-31. DOI: 10.1128/JVI.01084-10
Source: PubMed

ABSTRACT The mechanisms underlying HIV-1 control by protective HLA class I alleles are not fully understood and could involve selection of escape mutations in functionally important Gag epitopes resulting in fitness costs. This study was undertaken to investigate, at the population level, the impact of HLA-mediated immune pressure in Gag on viral fitness and its influence on HIV-1 pathogenesis. Replication capacities of 406 recombinant viruses encoding plasma-derived Gag-protease from patients chronically infected with HIV-1 subtype C were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. Viral replication capacities varied significantly with respect to the specific HLA-B alleles expressed by the patient, and protective HLA-B alleles, most notably HLA-B81, were associated with lower replication capacities. HLA-associated mutations at low-entropy sites, especially the HLA-B81-associated 186S mutation in the TL9 epitope, were associated with lower replication capacities. Most mutations linked to alterations in replication capacity in the conserved p24 region decreased replication capacity, while most in the highly variable p17 region increased replication capacity. Replication capacity also correlated positively with baseline viral load and negatively with baseline CD4 count but did not correlate with the subsequent rate of CD4 decline. In conclusion, there is evidence that protective HLA alleles, in particular HLA-B81, significantly influence Gag-protease function by driving sequence changes in Gag and that conserved regions of Gag should be included in a vaccine aiming to drive HIV-1 toward a less fit state. However, the long-term clinical benefit of immune-driven fitness costs is uncertain given the lack of correlation with longitudinal markers of disease progression.

Download full-text


Available from: Jonathan Carlson, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nef plays a major role in HIV-1 pathogenicity. We studied HIV-1 subtype C infected individuals in acute/early (n=120) or chronic (n=207) infection to investigate the relationship between Nef-mediated CD4/HLA-I down-regulation activities and disease progression, and the influence of immune-driven sequence variation on these Nef functions. A single Nef sequence per individual was cloned into an expression plasmid, followed by transfection of a T cell line and measurement of CD4 and HLA-I expression. In early infection, a trend of higher CD4 down-regulation ability correlating with higher viral load set point was observed (r=0.19, p=0.05), and higher HLA-I down-regulation activity was significantly associated with faster rate of CD4 decline (p=0.02). HLA-I down-regulation function correlated inversely with the number HLA-associated polymorphisms previously associated with reversion in the absence of the selecting HLA allele (r=−0.21, p=0.0002). These data support consideration of certain Nef regions in HIV-1 vaccine strategies designed to attenuate the infection course.
    Virology 11/2014; s 468–470:214–225. DOI:10.1016/j.virol.2014.08.009 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.
    PLoS ONE 03/2015; 10(3):e0119886. DOI:10.1371/journal.pone.0119886 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles (P < 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms (R = -0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation (n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection (R = -0.17; P < 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 (R = -0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.
    Journal of Virology 11/2010; 84(22):11937-49. DOI:10.1128/JVI.01086-10 · 4.65 Impact Factor