An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain.

Center for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Development (Impact Factor: 6.27). 09/2010; 137(18):3089-97. DOI: 10.1242/dev.051052
Source: PubMed

ABSTRACT Dlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (Gtf2i), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.
    PLoS Genetics 10/2014; 10(10):e1004646. DOI:10.1371/journal.pgen.1004646 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thousands of non-coding SNPs have been linked to human diseases in the past. The identification of causal alleles within this pool of disease-associated non-coding SNPs is largely impossible due to the inability to accurately quantify the impact of non-coding variation. To overcome this challenge, we developed a computational model that uses ChIP-seq intensity variation in response to non-coding allelic change as a proxy to the quantification of the biological role of non-coding SNPs. We applied this model to HepG2 enhancers and detected 4796 enhancer SNPs capable of disrupting enhancer activity upon allelic change. These SNPs are significantly over-represented in the binding sites of HNF4 and FOXA families of liver transcription factors and liver eQTLs. In addition, these SNPs are strongly associated with liver GWAS traits, including type I diabetes, and are linked to the abnormal levels of HDL and LDL cholesterol. Our model is directly applicable to any enhancer set for mapping causal regulatory SNPs. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Nucleic Acids Research 12/2014; 43(1). DOI:10.1093/nar/gku1318 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 01/2015; 85(1):27-47. DOI:10.1016/j.neuron.2014.11.011 · 15.77 Impact Factor