Article

Karyopherin α7 (KPNA7), a divergent member of the importin α family of nuclear import receptors

Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.
BMC Cell Biology (Impact Factor: 2.84). 08/2010; 11(1):63. DOI: 10.1186/1471-2121-11-63
Source: PubMed

ABSTRACT Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin alpha and importin beta. NLS cargo is recognized by importin alpha, which is bound by importin beta. Importin beta mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin beta triggers disassembly of the complex. To date, six importin alpha family members, encoded by separate genes, have been described in humans.
We sequenced and characterized a seventh member of the importin alpha family of transport factors, karyopherin alpha 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin beta (IBB) is divergent, and shows stronger binding to importin beta than the IBB domains from of other importin alpha family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic.
KPNA7 is a novel importin alpha family member in humans that belongs to the importin alpha2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin alpha family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.

Download full-text

Full-text

Available from: Joshua Brian Kelley, Jun 22, 2015
0 Followers
 · 
178 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
    Biochimica et Biophysica Acta 02/2012; 1819(6):616-30. DOI:10.1016/j.bbagrm.2012.01.015 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various cellular stresses including oxidative stress induce a collapse of the Ran gradient, which causes accumulation of importin α in the nucleus and a subsequent block of nuclear protein import. However, it is unknown whether accumulated importin α performs roles in the nucleus after its migration in response to stress. In this study, we found that nuclear-retained importin α2 binds with DNase I-sensitive nuclear component(s) and exhibits selective upregulation of mRNA encoding Serine/threonine kinase 35 (STK35) by microarray analysis. Chromatin immunoprecipitation and promoter analysis demonstrated that importin α2 can access to the promoter region of STK35 and accelerate its transcription in response to hydrogen peroxide exposure. Furthermore, constitutive overexpression of STK35 proteins enhances caspase-independent cell death under oxidative stress conditions. These results collectively reveal that nuclear-localized importin α2 influences gene expression and contributes directly to cell fate outcomes including non-apoptotic cell death.
    The EMBO Journal 09/2011; 31(1):83-94. DOI:10.1038/emboj.2011.360 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper muscle function is dependent on spatial and temporal control of gene expression in myofibers. Myofibers are multinucleated cells that are formed, repaired and maintained by the process of myogenesis in which progenitor myoblasts proliferate, differentiate and fuse. Gene expression is dependent upon proteins that require facilitated nuclear import, however little is known about the regulation of nucleocytoplasmic transport during the formation of myofibers. We analyzed the role of karyopherin alpha (KPNA), a key classical nuclear import receptor, during myogenesis. We established that five karyopherin alpha paralogs are expressed by primary mouse myoblasts in vitro and that their steady-state levels increase in multinucleated myotubes, suggesting a global increase in demand for classical nuclear import during myogenesis. We used siRNA-mediated knockdown to identify paralog-specific roles for KPNA1 and KPNA2 during myogenesis. KPNA1 knockdown increased myoblast proliferation, whereas KPNA2 knockdown decreased proliferation. In contrast, no proliferation defect was observed with KPNA4 knockdown. Only knockdown of KPNA2 decreased myotube growth. These results identify distinct pathways involved in myoblast proliferation and myotube growth that rely on specific nuclear import receptors suggesting that regulation of classical nuclear import pathways likely plays a critical role in controlling gene expression in skeletal muscle.
    Developmental Biology 09/2011; 357(1):248-58. DOI:10.1016/j.ydbio.2011.06.032 · 3.64 Impact Factor