Article

Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism.

Department of Psychiatry, The University of North Carolina at Chapel Hill, CB#3367, Chapel Hill, NC 27599-3367, USA.
Journal of Neurodevelopmental Disorders (Impact Factor: 3.71). 03/2009; 1(1):81-90. DOI: 10.1007/s11689-009-9009-8
Source: PubMed

ABSTRACT To examine brain volumes in substructures associated with the behavioral features of children with FXS compared to children with idiopathic autism and controls. A cross-sectional study of brain substructures was conducted at the first time-point as part of an ongoing longitudinal MRI study of brain development in FXS. The study included 52 boys between 18-42 months of age with FXS and 118 comparison children (boys with autism-non FXS, developmental-delay, and typical development). Children with FXS and autistic disorder had substantially enlarged caudate volume and smaller amygdala volume; whereas those children with autistic disorder without FXS (i.e., idiopathic autism) had only modest enlargement in their caudate nucleus volumes but more robust enlargement of their amygdala volumes. Although we observed this double dissociation among selected brain volumes, no significant differences in severity of autistic behavior between these groups were observed. This study offers a unique examination of early brain development in two disorders, FXS and idiopathic autism, with overlapping behavioral features, but two distinct patterns of brain morphology. We observed that despite almost a third of our FXS sample meeting criteria for autism, the profile of brain volume differences for children with FXS and autism differed from those with idiopathic autism. These findings underscore the importance of addressing heterogeneity in studies of autistic behavior.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Social avoidance and anxiety are prevalent in fragile X syndrome (FXS) and are potentially mediated by the amygdala, a brain region critical for social behavior. Unfortunately, functional brain resonance imaging investigation of the amygdala in FXS is limited by the difficulties experienced by intellectually impaired and anxious participants. We investigated the relationship between social avoidance and emotion-potentiated startle, a probe of amygdala activation, in children and adolescents with FXS, developmental disability without FXS (DD), and typical development. Individuals with FXS or DD demonstrated significantly reduced potentiation to fearful faces than a typically developing control group (p < .05). However, among individuals with FXS, social avoidance correlated positively with fearful-face potentiation (p < .05). This suggests that general intellectual disability blunts amygdalar response, but differential amygdala responsiveness to social stimuli contributes to phenotypic variability among individuals with FXS.
    Journal of Autism and Developmental Disorders 05/2014; · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Through the increased availability and sophistication of genetic testing, it is now possible to identify causal diagnoses in a growing proportion of children with neurodevelopmental disorders. In addition to developmental delay and intellectual disability, many genetic disorders are associated with high risks of psychopathology, which curtail the wellbeing of affected individuals and their families. Beyond the identification of significant clinical needs, understanding the diverse pathways from rare genetic mutations to cognitive dysfunction and emotional–behavioural disturbance has theoretical and practical utility.Methods We overview (based on a strategic search of the literature) the state-of-the-art on causal mechanisms leading to one of the most common childhood behavioural diagnoses – attention deficit hyperactivity disorder (ADHD) – in the context of specific genetic disorders. We focus on new insights emerging from the mapping of causal pathways from identified genetic differences to neuronal biology, brain abnormalities, cognitive processing differences and ultimately behavioural symptoms of ADHD.FindingsFirst, ADHD research in the context of rare genotypes highlights the complexity of multilevel mechanisms contributing to psychopathology risk. Second, comparisons between genetic disorders associated with similar psychopathology risks can elucidate convergent or distinct mechanisms at each level of analysis, which may inform therapeutic interventions and prognosis. Third, genetic disorders provide an unparalleled opportunity to observe dynamic developmental interactions between neurocognitive risk and behavioural symptoms. Fourth, variation in expression of psychopathology risk within each genetic disorder points to putative moderating and protective factors within the genome and the environment.ConclusionA common imperative emerging within psychopathology research is the need to investigate mechanistically how developmental trajectories converge or diverge between and within genotype-defined groups. Crucially, as genetic predispositions modify interaction dynamics from the outset, longitudinal research is required to understand the multi-level developmental processes that mediate symptom evolution.
    Journal of Child Psychology and Psychiatry 12/2014; · 5.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progress in basic neuroscience has led to identification of molecular targets for treatment in fragile X syndrome (FXS) and other neurodevelopmental disorders; however, there is a gap in translation to targeted therapies in humans. One major obstacle to the demonstration of efficacy in human trials has been the lack of generally accepted endpoints to assess improvement in function in individuals with FXS. To address this problem, the National Institutes of Health convened a meeting of leading scientists and clinicians with the goal of identifying and standardizing outcome measures for use as potential endpoints in clinical trials in FXS. Participants in the meeting included FXS experts, experts in the design and implementation of clinical trials and measure development, and representatives from advocacy groups, industry, and federal agencies. The group generated recommendations for optimal outcome measures in cognitive, behavioral, and biomarker/medical domains, including additional testing and validation of existing measures and development of new measures in areas of need. Although no one endpoint or set of endpoints could be identified that met all criteria as an optimal measure, recommendations are presented in this report. The report is expected to guide the selection of measures in clinical trials and lead to the use of a more consistent battery of measures across trials. Furthermore, this will help to direct research toward gaps in the development of validated FXS-specific outcome measures and to assist with interpretation of clinical trial data by creating templates for measurement of treatment efficacy.
    Journal of developmental and behavioral pediatrics: JDBP 09/2013; 34(7):508-522. · 2.12 Impact Factor

Full-text (2 Sources)

Download
11 Downloads
Available from
Jun 11, 2014