ProbKnot: Fast prediction of RNA secondary structure including pseudoknots

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
RNA (Impact Factor: 4.62). 10/2010; 16(10):1870-80. DOI: 10.1261/rna.2125310
Source: PubMed

ABSTRACT It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N(2)) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at:

Download full-text


Available from: Stanislav Bellaousov, Jun 21, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.
    BioMed Research International 01/2014; 2014:690340. DOI:10.1155/2014/690340 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non-trivial pseudoknot topologies. Specifically, McGenus uses a Monte Carlo algorithm with replica exchange for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web server at
    Nucleic Acids Research 12/2012; 41(3). DOI:10.1093/nar/gks1204 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MOTIVATION: We study a stochastic method for approximating the set of local minima in partial RNA folding landscapes associated with a bounded-distance neighbourhood of folding conformations. The conformations are limited to RNA secondary structures without pseudoknots. The method aims at exploring partial energy landscapes pL induced by folding simulations and their underlying neighbourhood relations. It combines an approximation of the number of local optima devised by Garnier and Kallel (2002) with a run-time estimation for identifying sets of local optima established by Reeves and Eremeev (2004). RESULTS: The method is tested on nine sequences of length between 50 nt and 400 nt, which allows us to compare the results with data generated by RNAsubopt and subsequent barrier tree calculations. On the nine sequences, the method captures on average 92% of local minima with settings designed for a target of 95%. The run-time of the heuristic can be estimated by O(n(2)Dνlnν), where n is the sequence length, ν is the number of local minima in the partial landscape pL under consideration and D is the maximum number of steepest descent steps in attraction basins associated with pL.
    Bioinformatics 12/2011; 28(4):523-30. DOI:10.1093/bioinformatics/btr715 · 4.62 Impact Factor