Article

Plasma proteome response to severe burn injury revealed by 18O-labeled "universal" reference-based quantitative proteomics.

Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Journal of Proteome Research (Impact Factor: 5.06). 09/2010; 9(9):4779-89. DOI:10.1021/pr1005026
Source: PubMed

ABSTRACT A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled "universal" reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of approximately 35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions as well as potential predictive biomarkers for patient outcomes such as multiple organ failure.

0 0
 · 
0 Bookmarks
 · 
97 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The discovery of clinically relevant cancer biomarkers using mass spectrometry (MS)-based proteomics has proven difficult, primarily because of the enormous dynamic range of blood-derived protein concentrations and the fact that the 22 most abundant blood-derived proteins constitute approximately 99% of the total plasma protein mass. Immunodepletion of clinical body fluid specimens (e.g., serum/plasma) for the removal of highly abundant proteins is a reasonable and reproducible solution. Often overlooked, clinical tissue specimens also contain a formidable amount of highly abundant blood-derived proteins present in tissue-embedded networks of blood/lymph capillaries and interstitial fluid. Hence, the dynamic range impediment to biomarker discovery remains a formidable obstacle, regardless of clinical sample type (solid tissue and/or body fluid). Thus, we optimized and applied simultaneous immunodepletion of blood-derived proteins from solid tissue and peripheral blood, using clear cell renal cell carcinoma as a model disease. Integrative analysis of data from this approach and genomic data obtained from the same type of tumor revealed concordant key pathways and protein targets germane to clear cell renal cell carcinoma. This includes the activation of the lipogenic pathway characterized by increased expression of adipophilin (PLIN2) along with 'cadherin switching', a phenomenon indicative of transcriptional reprogramming linked to renal epithelial dedifferentiation. We also applied immunodepletion of abundant blood-derived proteins to various tissue types (e.g., adipose tissue and breast tissue) showing unambiguously that the removal of abundant blood-derived proteins represents a powerful tool for the reproducible profiling of tissue proteomes. Herein, we show that the removal of abundant blood-derived proteins from solid tissue specimens is of equal importance to depletion of body fluids and recommend its routine use in the context of biological discovery and/or cancer biomarker research. Finally, this perspective presents the background, rationale and strategy for using tissue-directed high-resolution/accuracy MS-based shotgun proteomics to detect genuine tumor proteins in the peripheral blood of a patient diagnosed with nonmetastatic cancer, employing concurrent liquid chromatography-MS analysis of immunodepleted clinical tissue and blood specimens.
    Biomarkers in Medicine 02/2014; 8(2):269-86. · 3.22 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Attenuating the sepsis-induced systemic inflammatory response, with subsequent homeostatic imbalance, has for years been one of the main tasks in sepsis related research. Complement and the TLR family constitute two important upstream sensor and effector-systems of innate immunity. Although they act as partly independent branches of pattern recognition, recent evidence indicate a considerable cross-talk implying that they can either compensate, synergize or antagonize each other. Combined inhibition of these pathways is therefore a particularly interesting approach with a profound anti-inflammatory potential. In previous preclinical studies, we demonstrated that targeting the key molecules C3 or C5 of complement and CD14 of the TLR family had a vast anti-inflammatory effect on Gram-negative bacteria-induced inflammation and sepsis. In this review, we elucidate the significance of these key molecules as important targets for intervention in sepsis and systemic inflammatory response syndrome. Finally, we argue that a combined inhibition of complement and CD14 represent a potential general treatment regimen, beyond the limit of sepsis, including non-infectious systemic inflammation and ischemia reperfusion injury.
    Immunobiology 11/2012; 217(11):1047-56. · 2.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To familiarize clinicians with advances in computational disease modeling applied to trauma and sepsis. PubMed search and review of relevant medical literature. Definitions, key methods, and applications of computational modeling to trauma and sepsis are reviewed. Computational modeling of inflammation and organ dysfunction at the cellular, organ, whole-organism, and population levels has suggested a positive feedback cycle of inflammation → damage → inflammation that manifests via organ-specific inflammatory switching networks. This structure may manifest as multicompartment "tipping points" that drive multiple organ dysfunction. This process may be amenable to rational inflammation reprogramming.
    Critical care medicine 08/2013; 41(8):2008-14. · 6.37 Impact Factor

Full-text

View
0 Downloads
Available from