RhoA and RhoC Are Both Required for the ROCK II-Dependent Promotion of Centrosome Duplication

Molecular Oncology Program, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
Oncogene (Impact Factor: 8.56). 11/2010; 29(45):6040-50. DOI: 10.1038/onc.2010.328
Source: PubMed

ABSTRACT CDK2-cyclin E triggers centrosome duplication, and nucleophosmin (NPM/B23) is found to be one of its targets. NPM/B23 phosphorylated by CDK2-cyclin E acquires a high binding affinity to Rho-associated kinase (ROCK II), and physically associates with ROCK II. The NPM/B23-binding results in superactivation of ROCK II, which is a critical event for initiation of centrosome duplication. The activation of ROCK II also requires the binding of Rho small GTPase to the auto-inhibitory region; hence the availability of the active Rho protein is an important aspect of the centrosomally localized ROCK II to properly initiate centrosome duplication. There are three isoforms of Rho (RhoA, B and C), all of which are capable of binding to and priming the activation of ROCK II. Here, we investigated which Rho isoform(s) are involved in the activation of ROCK II in respect to the initiation of centrosome duplication. We found that both RhoA and RhoC, but not RhoB, were required for initiation of centrosome duplication, and overactivation of RhoA, as well as RhoC, but not RhoB, promoted centrosome duplication and centrosome amplification.

  • Source
    Lung Diseases - Selected State of the Art Reviews, 03/2012; , ISBN: 978-953-51-0180-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: The centrosome that functions as a microtubule organizing center of a cell plays a key role in formation of bipolar mitotic spindles. Cells normally have either one (unduplicated) or two (duplicated) centrosomes. However, loss of the mechanisms controlling the numeral integrity of centrosomes leads to centrosome amplification (presence of more than two centrosomes), primarily via overduplication or fragmentation of centrosomes, resulting in defective mitosis and consequentially chromosome instability. Centrosome amplification frequently occurs in various cancers, and is considered as a major cause of chromosome instability. It has recently been found that ROCK2 kinase plays a critical role in promotion of centrosome duplication and amplification. Considering that ROCK2 is activated by Rho protein, and Rho is the immediate downstream target of many growth and hormone receptors, it is possible that such receptors may rather directly affect centrosome duplication and amplification. Indeed, constitutive activation of the receptors known to signal to the Rho pathway leads to promotion of centrosome amplification and chromosome instability in the Rho-ROCK2 pathway-dependent manner. These observations reveal an unexplored, yet important, oncogenic activities of those receptors in carcinogenesis; destabilizing chromosomes through promotion of centrosome amplification via continual activation of the Rho-ROCK2 pathway.
    Hormones and Cancer 04/2011; 2(2):104-12. DOI:10.1007/s12672-010-0060-4 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.
    06/2012; 4(2):475-489. DOI:10.3390/cancers4020475


Available from