An in vivo experimental study on osteopenia in diabetic rats

Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, Italy.
Acta histochemica (Impact Factor: 1.76). 10/2011; 113(6):619-25. DOI: 10.1016/j.acthis.2010.07.002
Source: PubMed

ABSTRACT Osteopenia is a significant problem associated with Diabetes mellitus. Osteopenia may result in an increased delay in healing of bone fractures and subsequently affect the quality of life. We evaluated the immunohistochemical localization of TRAIL and its receptor DR5 in the femoral bone of 10-week-old Sprague-Dawley male rats treated with sesame oil (control, group 1), streptozotocin (STZ), a diabetes inducer (group 2), L-NAME, a general inhibitor of NOS activity (group 3), L-arginine (group 4), (arginine acts as a NO substrate) and iNOS immunostaining in group 1 and group 4. Histological and histochemical findings showed decreased growth of metaphyseal cartilage (which was thinner), decreased osteoid surface, and reduced mineral apposition rate in STZ- and L-NAME-treated rats. These findings confirm that bone formation is impaired in diabetic osteopenia. L-arginine supplementation seems to prevent diabetes-induced bone alterations and preserve the calcification process, allowing synthesis of new bone matrix. The immunohistochemical study revealed increased immunostaining of TRAIL and DR5 in osteoblastic cells of the diaphysis (pre-metaphysis) and epiphysis treated with STZ and L-NAME, related to activation of osteoblastic apoptotic death, while the group receiving L-arginine was comparable to the control group and the higher indications of iNOS activity that may reflect its induction by L-arginine administration. The action of L-arginine suggests that increased NO synthesis and availability is potentially useful for effective prevention and treatment of diabetic osteopenia.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivo and in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue.
    European journal of histochemistry: EJH 07/2014; 58(3):2423. DOI:10.4081/ejh.2014.2423 · 2.24 Impact Factor
  • Source
    Eicosapentaenoic acid: sources, health effects, and role in disease prevention, Edited by Theodore G. Bradley, Francisco P. Vargas, 01/2012: chapter Eicosapentaenoic acid and bone metabolism: pages 47-74; Nova Science Publishers.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A literature review of tile treatment of cartilage defects was conducted, examining the current literature on the well-known treatments. In particular, advantages and drawbacks of each of the discussed treatments were evaluated considering outcomes available in literature. The literature search was conducted on PubMed and Scopus using appropriate keywords in relation to cartilage defects. Main research articles were selected for review. Cartilage damage affects thousands of persons each year; they are treated with implants and surgery. A major problem in the treatment of cartilage defects is the inability of cartilage to repair, which reduces the effectiveness of the treatment. In addition, cyclic loading of joints further degrades cartilage even after treatment. In relation to the conditions of cartilage lesions and the features of patients, a specific treatment is required in each case. Current treatments are often unpredictable in results but result in long term improvements for many patients, especially young patients. The well established treatments such as osteochondral implants, bone marrow stimulation techniques, chondrogenic cell implantations have advantages and drawbacks, so that the search has not been interrupted for new strategies, such as scaffold materials. In this review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness.


Available from
Feb 27, 2015