Olfactory Bulb Habituation to Odor Stimuli

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
Behavioral Neuroscience (Impact Factor: 3.25). 08/2010; 124(4):490-9. DOI: 10.1037/a0020293
Source: PubMed

ABSTRACT Habituation is a simple form of memory, yet its neurobiological mechanisms are only beginning to be understood in mammals. In the olfactory system, the neural correlates of habituation at a fast experimental timescale involving very short intertrial intervals (tens of seconds) have been shown to depend on synaptic adaptation in olfactory cortex. In contrast, behavioral habituation to odorants on a longer timescale with intertrial intervals of several minutes depends on processes in the olfactory bulb, as demonstrated by pharmacological studies. We here show that behavioral habituation to odorants on this longer timescale has a neuronal activity correlate in the olfactory bulb. Spiking responses of mitral cells in the rat olfactory bulb adapt to, and recover from, repeated odorant stimulation with 5-min intertrial intervals with a time course similar to that of behavioral habituation. Moreover, both the behavioral and neuronal effects of odor habituation require functioning N-methyl-d-aspartic acid receptors in the olfactory bulb.

Download full-text


Available from: Olga Escanilla, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system-particularly olfactory bulb-comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.
    Frontiers in Behavioral Neuroscience 07/2014; 8:238. DOI:10.3389/fnbeh.2014.00238 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our knowledge regarding the neural processing of the three chemical senses has been lagging behind that of our other senses considerably. It is only during the last 25 years that significant advances have been made in our understanding of where in the human brain odors, tastants, and trigeminal stimuli are processed. Here we provide an overview of the current knowledge of how the human brain processes chemical stimuli based on findings in neuroimaging studies using positron emission tomography and functional magnetic resonance imaging. Additionally, we provide new insights from recent meta-analyses, based on all published neuroimaging studies of the chemical senses, of where the chemical senses converge in the brain.
    ACS Chemical Neuroscience 01/2011; 2(1):5-16. DOI:10.1021/cn1000843 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although olfactory discrimination has already been studied in several mouse strains, data on protein levels linked to olfactory memory are limited. Wild mouse strains Mus musculus musculus, Mus musculus domesticus and CD1 laboratory outbred mice were tested in a conditioned odor preference task and trained to discriminate between two odors, Rose and Lemon, by pairing one odor with a sugar reward. Six hours following the final test, mice were sacrificed and olfactory bulbs (OB) were taken for gel-based proteomics analyses and immunoblotting. OB proteins were extracted, separated by 2-DE and quantified using specific software (Proteomweaver). Odor-trained mice showed a preference for the previously rewarded odor suggesting that conditioned odor preference occurred. In CD1 mice levels, one out of 482 protein spots was significantly increased in odor-trained mice as compared with the control group; it was in-gel digested by trypsin and chymotrypsin and analyzed by tandem mass spectrometry (nano-ESI-LC-MS/MS). The spot was unambiguously identified as serine/threonine-protein phosphatase PP1-α catalytic subunit (PP-1A) and differential levels observed in gel-based proteomic studies were verified by immunoblotting. PP-1A is a key signalling element in synaptic plasticity and memory processes and is herein shown to be paralleling olfactory discrimination representing olfactory memory.
    Electrophoresis 06/2011; 32(13):1675-83. DOI:10.1002/elps.201000615 · 3.16 Impact Factor

Similar Publications