Differential induction of CD38 expression by TNF-{alpha} in asthmatic airway smooth muscle cells.

Dept. of Veterinary and Biomedical Sciences, Univ. of Minnesota, St. Paul, 55108, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 3.52). 12/2010; 299(6):L879-90. DOI: 10.1152/ajplung.00021.2010
Source: PubMed

ABSTRACT The ADP-ribosyl cyclase activity of CD38, a membrane protein expressed in human airway smooth muscle (ASM) cells, generates cyclic ADP-ribose (cADPR), a Ca²(+)-mobilizing agent. cADPR-mediated Ca²(+) responses to agonists are augmented in human ASM cells by TNF-α. CD38-deficient mice fail to develop airway hyperresponsiveness following intranasal TNF-α or IL-13 challenge, suggesting a role in asthma. The role of CD38 in human asthma remains unknown. We hypothesized that CD38 expression will be elevated in ASM cells from asthmatic donors (ASMA cells). CD38 mRNA and ADP-ribosyl cyclase activity were measured in cells maintained in growth-arrested conditions and exposed to vehicle or TNF-α (10-40 ng/ml). TNF-α-induced induction of CD38 expression was greater in ASMA than in ASM cells from nonasthmatic donors (ASMNA). In four of the six donors, basal and TNF-α-induced ERK and p38 MAPK activation were higher in ASMA than ASMNA cells. JNK MAPK activation was lower in ASMA than ASMNA cells. Nuclear NF-κB (p50 subunit) and phosphorylated c-Jun were comparable in cells from both groups, although nuclear c-Fos (part of the AP-1 complex) levels were lower in ASMA than ASMNA cells. NF-κB or AP-1 binding to their consensus sequences was comparable in ASMNA and ASMA cells, as are the decay kinetics of CD38 mRNA. The findings suggest that the differential induction of CD38 by TNF-α in ASMA cells is due to increased transcriptional regulation involving ERK and p38 MAPK activation and is independent of changes in NF-κB or AP-1 activation. The findings suggest a potential role for CD38 in the pathophysiology of asthma.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
    Pharmacology [?] Therapeutics 01/2014; · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The cell-surface protein CD38 mediates airway smooth muscle (ASM) contractility by generating cyclic ADP-ribose, a calcium-mobilizing molecule. In human ASM cells, TNF-¿ augments CD38 expression transcriptionally by NF-¿B and AP-1 activation and involving MAPK and PI3K signaling. CD38 ¿/¿ mice develop attenuated airway hyperresponsiveness following allergen or cytokine challenge. The post-transcriptional regulation of CD38 expression in ASM is relatively less understood. In ASM, microRNAs (miRNAs) regulate inflammation, contractility, and hyperproliferation. The 3¿ Untranslated Region (3¿UTR) of CD38 has multiple miRNA binding sites, including a site for miR-708. MiR-708 is known to regulate PI3K/AKT signaling and hyperproliferation of other cell types. We investigated miR-708 expression, its regulation of CD38 expression and the underlying mechanisms involved in such regulation in human ASM cells.Methods Growth-arrested human ASM cells from asthmatic and non-asthmatic donors were used. MiRNA and mRNA expression were measured by quantitative real-time PCR. CD38 enzymatic activity was measured by a reverse cyclase assay. Total and phosphorylated MAPKs and PI3K/AKT as well as enzymes that regulate their activation were determined by Western blot analysis of cell lysates following miRNA transfection and TNF-¿ stimulation. Dual luciferase reporter assays were performed to determine whether miR-708 binds directly to CD38 3¿UTR to alter gene expression.ResultsUsing target prediction algorithms, we identified several miRNAs with potential CD38 3¿UTR target sites and determined miR-708 as a potential candidate for regulation of CD38 expression based on its expression and regulation by TNF-¿. TNF-¿ caused a decrease in miR-708 expression in cells from non-asthmatics while it increased its expression in cells from asthmatics. Dual luciferase reporter assays in NIH-3 T3 cells revealed regulation of expression by direct binding of miR-708 to CD38 3¿UTR. In ASM cells, miR-708 decreased CD38 expression by decreasing phosphorylation of JNK MAPK and AKT. These effects were associated with increased expression of MKP-1, a MAP kinase phosphatase and PTEN, a phosphatase that terminates PI3 kinase signaling.Conclusions In human ASM cells, TNF-¿-induced CD38 expression is regulated by miR-708 directly binding to 3¿UTR and indirectly by regulating JNK MAPK and PI3K/AKT signaling and has the potential to control airway inflammation, ASM contractility and proliferation.
    Respiratory research. 08/2014; 15(1):107.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.
    Canadian Journal of Physiology and Pharmacology 12/2014; · 1.56 Impact Factor