Genetic Dissection of the Amyloid Precursor Protein in Developmental Function and Amyloid Pathogenesis

Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 10/2010; 285(40):30598-605. DOI: 10.1074/jbc.M110.137729
Source: PubMed

ABSTRACT Proteolytic processing of the amyloid precursor protein (APP) generates large soluble APP derivatives, β-amyloid (Aβ) peptides, and APP intracellular domain. Expression of the extracellular sequences of APP or its Caenorhabditis elegans counterpart has been shown to be sufficient in partially rescuing the CNS phenotypes of the APP-deficient mice and the lethality of the apl-1 null C. elegans, respectively, leaving open the question as what is the role of the highly conserved APP intracellular domain? To address this question, we created an APP knock-in allele in which the mouse Aβ sequence was replaced by the human Aβ. A frameshift mutation was introduced that replaced the last 39 residues of the APP sequence. We demonstrate that the C-terminal mutation does not overtly affect APP processing and amyloid pathology. In contrast, crossing the mutant allele with APP-like protein 2 (APLP2)-null mice results in similar neuromuscular synapse defects and early postnatal lethality as compared with mice doubly deficient in APP and APLP2, demonstrating an indispensable role of the APP C-terminal domain in these development activities. Our results establish an essential function of the conserved APP intracellular domain in developmental regulation, and this activity can be genetically uncoupled from APP processing and Aβ pathogenesis.

3 Reads
  • Source
    • "Preliminary analysis showed that, similar to the APP Swedish/London knock-in mice, the APP Dutch/Swedish/London mice develop minimal Aβ deposits in their life time, we accordingly bred both lines with the PS1 M146V knock-in mice [23-25] to facilitate the development of amyloid pathology within the aging time span of the mice. All subsequent studies were performed in the APP and PS1 M146V double homozygous background, listing the line with Swedish/London mutations and Dutch/Swedish/London as APP SL and APP DSL, respectively. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer’s disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood–brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer’s disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.
    Molecular Neurodegeneration 08/2014; 9(1):28. DOI:10.1186/1750-1326-9-28 · 6.56 Impact Factor
  • Source
    • "Our lab previously validated the presence of human Aβ in the APP knock-in mice [16], but the level is not sufficient to induce detectable plaque pathology within their lifespan (data not shown). We first examined the γ-secretase activity in WT, APP, PS1, APP/PS1, and APP/PS1/htau brain samples at 3 to 4 months of age. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD. To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion. The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.
    PLoS ONE 11/2013; 8(11):e80706. DOI:10.1371/journal.pone.0080706 · 3.23 Impact Factor
  • Source
    • "Experimental data show that the N-terminus of APL-1 is necessary for progression through molting stages by nematodes [27]. The C-terminus of at least one member of the AβPP family is necessary for viability in early parturition of knockout mouse models [28-30]. Drosophila models without APPL-1 show subtle neuronal patterning defects but remain viable and able to reproduce [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Amyloid-β plaques are a defining characteristic of Alzheimer Disease. However, Amyloid-β deposition is also found in other forms of dementia and in non-pathological contexts. Amyloid-β deposition is variable among vertebrate species and the evolutionary emergence of the amyloidogenic property is currently unknown. Evolutionary persistence of a pathological peptide sequence may depend on the functions of the precursor gene, conservation or mutation of nucleotides or peptide domains within the precursor gene, or a species-specific physiological environment. Results In this study, we asked when amyloidogenic Amyloid-β first arose using phylogenetic trees constructed for the Amyloid-β Precursor Protein gene family and by modeling the potential for Amyloid-β aggregation across species in silico. We collected the most comprehensive set of sequences for the Amyloid-β Precursor Protein family using an automated, iterative meta-database search and constructed a highly resolved phylogeny. The analysis revealed that the ancestral gene for invertebrate and vertebrate Amyloid-β Precursor Protein gene families arose around metazoic speciation during the Ediacaran period. Synapomorphic frequencies found domain-specific conservation of sequence. Analyses of aggregation potential showed that potentially amyloidogenic sequences are a ubiquitous feature of vertebrate Amyloid-β Precursor Protein but are also found in echinoderm, nematode, and cephalochordate, and hymenoptera species homologues. Conclusions The Amyloid-β Precursor Protein gene is ancient and highly conserved. The amyloid forming Amyloid-β domains may have been present in early deuterostomes, but more recent mutations appear to have resulted in potentially unrelated amyoid forming sequences. Our results further highlight that the species-specific physiological environment is as critical to Amyloid-β formation as the peptide sequence.
    BMC Genomics 04/2013; 14(1):290. DOI:10.1186/1471-2164-14-290 · 3.99 Impact Factor
Show more