Adrenal α2-adrenergic receptors in the aging normotensive and spontaneously hypertensive rat.

Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.
Neurobiology of aging (Impact Factor: 5.94). 08/2010; 33(5):969-78. DOI: 10.1016/j.neurobiolaging.2010.06.021
Source: PubMed

ABSTRACT This study investigates α(2)-adrenergic receptor (α(2)AR) mediated feedback inhibition of catecholamine release from the adrenal medulla of adult (52 weeks) and old (98 weeks) spontaneously hypertensive rats (SHR) and normotensive controls Wistar Kyoto (WKY) rats. Adrenal epinephrine content as well as the spontaneous and the nicotinic-evoked release of epinephrine were similar between adult SHR and WKY rats. Aging produced a significant reduction in epinephrine synthesis in WKY rats. In contrast, in SHR aging produced a significant increase in epinephrine release without significant changes in epinephrine synthesis. The α(2)AR agonist medetomidine abolished (80-90% inhibition) the nicotinic-evoked release of epinephrine in adult SHR and WKY rats. With aging, this effect was unaltered in WKY rats but was significantly decreased in SHR (30% inhibition). Adrenal α(2A)AR mRNA levels were significantly reduced in old SHR compared with age matched WKY rats. In conclusion, in aging the α(2)AR mediated feedback inhibition of epinephrine release from the adrenal medulla is preserved in WKY rats but compromised in SHR, resulting in increased epinephrine release.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L-arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3(rd)-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. L-arginine initiated relaxations (EC50, 5.8 ± 0.7 mM; n = 9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3 ± 1.3 mM; n = 5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7 ± 12.1 μM; n = 22), which was compromised by L-NAME (L-N(G)-Nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9 ± 23.4 μM; n = 5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension.
    Nitric Oxide 08/2013; · 3.27 Impact Factor