Article

Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets.

Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
PLoS Pathogens (Impact Factor: 8.14). 01/2010; 6(7):e1001022. DOI: 10.1371/journal.ppat.1001022
Source: PubMed

ABSTRACT The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007-2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic.

0 Bookmarks
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.
    PLoS Pathogens 04/2014; 10(4):e1004065. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each.
    Journal of immunological methods 04/2014; · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
    Cell 04/2014; 157(2):329-39. · 31.96 Impact Factor

Full-text (3 Sources)

Download
33 Downloads
Available from
May 17, 2014