Quantitative Relationships between Huntingtin Levels, Polyglutamine Length, Inclusion Body Formation, and Neuronal Death Provide Novel Insight into Huntington's Disease Molecular Pathogenesis

Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2010; 30(31):10541-50. DOI: 10.1523/JNEUROSCI.0146-10.2010
Source: PubMed

ABSTRACT An expanded polyglutamine (polyQ) stretch in the protein huntingtin (htt) induces self-aggregation into inclusion bodies (IBs) and causes Huntington's disease (HD). Defining precise relationships between early observable variables and neuronal death at the molecular and cellular levels should improve our understanding of HD pathogenesis. Here, we used an automated microscope that tracks thousands of neurons individually over their entire lifetime to quantify interconnected relationships between early variables, such as htt levels, polyQ length, and IB formation, and neuronal death in a primary striatal model of HD. The resulting model revealed that mutant htt increases the risk of death by tonically interfering with homeostatic coping mechanisms rather than producing accumulated damage to the neuron, htt toxicity is saturable, the rate-limiting steps for inclusion body formation and death can be traced to different conformational changes in monomeric htt, and IB formation reduces the impact of the starting levels of htt of a neuron on its risk of death. Finally, the model that emerges from our quantitative measurements places critical limits on the potential mechanisms by which mutant htt might induce neurodegeneration, which should help direct future research.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nine inherited neurodegenerative diseases are associated with the expansion of the CAG codon. Once the translated polyglutamine expansion becomes longer than about 36 residues, it triggers the formation of intraneural protein aggregates that display the signature of cross-beta amyloid fibrils. Here, we use fully atomistic molecular dynamics simulations to probe the structural stability and conformational dynamics of both previously proposed and new polyglutamine aggregate models. We test the relative stability of parallel and antiparallel beta sheets, and characterize possible steric interfaces between neighboring sheets, and the effects of different alignments of the side-chain carboxamide dipoles. Results indicate that: (i) different initial oligomer structures converge to crystals consistent with available diffraction data, after undergoing cooperative side-chain rotational transitions and quarter-stagger displacements on a microsecond timescale; (ii) structures previously deemed stable on a hundred nanosecond timescale are unstable over the microsecond timescale; (iii) conversely, structures previously deemed unstable did not account for the correct side-chain packing; once the correct symmetry is considered the structures become stable for over a microsecond, due to tightly interdigitated side chains, which lock into highly regular polar zippers with inter-side-chain and backbone-side-chain hydrogen bonds. With these insights, we built Q_40 monomeric models with different combinations of arc and/or hairpin turns, and tested them for stability. The stable monomers were further probed as a function of repeat length. Our results are consistent with the aggregation threshold. These results explain and reconcile previously reported experimental and model discrepancies about polyglutamine aggregate structures.
    ACS Chemical Neuroscience 01/2015; DOI:10.1021/cn500358g · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2-6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1-42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72-86% (P < 10(-6) ). In worms expressing Aβ1-42 , knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10(-6) ). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly beneficial for early reproduction, but ultimately impair aggregate clearance and limit longevity. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
    Aging Cell 12/2014; 14(1). DOI:10.1111/acel.12296 · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.
    Cellular and Molecular Life Sciences CMLS 10/2014; 72(3). DOI:10.1007/s00018-014-1740-y · 5.86 Impact Factor


Available from