Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury.

Department of Neuroscience, Uppsala University, Uppsala, Sweden.
Experimental Neurology (Impact Factor: 4.62). 07/2011; 230(1):48-57. DOI: 10.1016/j.expneurol.2010.05.018
Source: PubMed

ABSTRACT Recent work has demonstrated that self-repair in the adult brain can be augmented by the infusion of growth factors to activate endogenous neural precursor cells that contribute to new tissue formation and functional recovery in a model of stroke. Using both a genetic model and drug treatment, we demonstrate that immunosuppression mimics the effects of growth factor activation, including tissue regeneration, neural precursor cell migration and functional recovery following ischemic injury. In the absence of growth factor treatment, mice with a functional immune system develop a prominent cavity in the cortex underlying the ischemic injury. In untreated immunodeficient NOD/SCID mice, however, the cortical cavity forms but is then filled with regenerated cortical tissue containing glial cells and subependyma derived neural stem and progenitor cells that migrate from their niche lining the lateral ventricles. The daily administration of Cyclosporine A also results in endogenous neural precursor cell migration and regenerated cortical tissue at the site of the cortical injury. Different from growth factor-treated animals is the finding that the regenerated cortical tissue in immunosuppressed animals is devoid of new neurons. Interestingly, both the growth factor and immunosuppressed (NOD/SCID and Cyclosporine A) treated animals displayed functional behavioural recovery despite the lack of neurogenesis within the regenerated cortical tissue. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult forebrain definitive neural stem cells (NSCs) comprise a subpopulation of GFAP-expressing subependymal cells that arise from embryonic fibroblast growth factor (FGF)-dependent NSCs that are first isolated from the developing brain at E8.5. Embryonic FGF-dependent NSCs are derived from leukemia inhibitory factor (LIF)-responsive, Oct4-expressing primitive NSCs (pNSCs) that are first isolated at E5.5. We report the presence of a rare population of pNCSs in the periventricular region of the adult forebrain. Adult-derived pNSCs (AdpNSCs) are GFAP(-), LIF-responsive stem cells that display pNSC properties, including Oct4 expression and the ability to integrate into the inner cell mass of blastocysts. AdpNSCs generate self-renewing, multipotent colonies that give rise to definitive GFAP(+) NSCs in vitro and repopulate the subependyma after the ablation of GFAP(+) NSCs in vivo. These data support the hypothesis that a rare population of pNSCs is present in the adult brain and is upstream of the GFAP(+) NSCs.
    Stem cell reports. 06/2014; 2(6):810-24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporin A (CsA) has direct effects on neural stem and progenitor cells (together termed neural precursor cells; NPCs) in the adult central nervous system. Administration of CsA in vitro or in vivo promotes the survival of NPCs and expands the pools of NPCs in mice. Moreover, CsA administration is effective in promoting NPC activation, tissue repair and functional recovery in a mouse model of cortical stroke. The mechanism(s) by which CsA mediates this cell survival effect remains unknown. Herein, we examined both calcineurin-dependent and calcineurin-independent pathways through which CsA might mediate NPC survival. To examine calcineurin-dependent pathways, we utilized FK506 (Tacrolimus), an immunosuppressive molecule that inhibits calcineurin, as well as drugs that inhibit cyclophilin A-mediated activation of calcineurin. To evaluate the calcineurin-independent pathway, we utilized NIM811, a non-immunosuppressive CsA analog that functions independently of calcineurin by blocking mitochondrial permeability transition pore formation. We found that only NIM811 can entirely account for the pro-survival effects of CsA on NPCs. Indeed, blocking signaling pathways downstream of calcineurin activation using nNOS mice did not inhibit CsA-mediated cell survival, which supports the proposal that the effects are calcinuerin-independent. In vivo studies revealed that NIM811 administration mimics the pro-survival effects of CsA on NPCs and promotes functional recovery in a model of cortical stroke, identical to the effects seen with CsA administration. We conclude that CsA mediates its effect on NPC survival through calcineurin-independent inhibition of mitochondrial permeability transition pore formation and suggest that this pathway has potential therapeutic benefits for developing NPC-mediated cell replacement strategies.
    Disease Models and Mechanisms 08/2014; 7(8):953-61. · 5.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review covers the pathogenesis of ischemic stroke and future directions regarding therapeutic options after injury. Ischemic stroke is a devastating disease process affecting millions of people worldwide every year. The mechanisms underlying the pathophysiology of stroke are not fully understood but there is increasing evidence demonstrating the contribution of inflammation to the drastic changes after cerebral ischemia. This inflammation not only immediately affects the infarcted tissue but also causes long-term damage in the ischemic penumbra. Furthermore, the interaction between inflammation and subsequent neurogenesis is not well understood but the close relationship between these two processes has garnered significant interest in the last decade or so. Current approved therapy for stroke involving pharmacological thrombolysis is limited in its efficacy and new treatment strategies need to be investigated. Research aimed at new therapies is largely about transplantation of neural stem cells and using endogenous progenitor cells to promote brain repair. By understanding the interaction between inflammation and neurogenesis, new potential therapies could be developed to further establish brain repair mechanisms.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 July 2014; doi:10.1038/jcbfm.2014.130.
    Journal of Cerebral Blood Flow & Metabolism 07/2014; · 5.34 Impact Factor