Article

A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing.

Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
Nucleic Acids Research (Impact Factor: 8.81). 09/2010; 38(17):e171. DOI: 10.1093/nar/gkq667
Source: PubMed

ABSTRACT Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism.

1 Bookmark
 · 
178 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bithynia siamensis goniomphalos is the snail intermediate host of the liver fluke, Opisthorchis viverrini, the leading cause of cholangiocarcinoma (CCA) in the Greater Mekong sub-region of Thailand. Despite the severe public health impact of Opisthorchis-induced CCA, knowledge of the molecular interactions occurring between the parasite and its snail intermediate host is scant. The examination of differences in gene expression profiling between uninfected and O. viverrini-infected B. siamensis goniomphalos could provide clues on fundamental pathways involved in the regulation of snail-parasite interplay. Using high-throughput (Illumina) sequencing and extensive bioinformatic analyses, we characterized the transcriptomes of uninfected and O. viverrini-infected B. siamensis goniomphalos. Comparative analyses of gene expression profiling allowed the identification of 7,655 differentially expressed genes (DEGs), associated to 43 distinct biological pathways, including pathways associated with immune defense mechanisms against parasites. Amongst the DEGs with immune functions, transcripts encoding distinct proteases displayed the highest down-regulation in Bithynia specimens infected by O. viverrini; conversely, transcription of genes encoding heat-shock proteins and actins was significantly up-regulated in parasite-infected snails when compared to the uninfected counterparts. The present study lays the foundation for functional studies of genes and gene products potentially involved in immune-molecular mechanisms implicated in the ability of the parasite to successfully colonize its snail intermediate host. The annotated dataset provided herein represents a ready-to-use molecular resource for the discovery of molecular pathways underlying susceptibility and resistance mechanisms of B. siamensis goniomphalos to O. viverrini and for comparative analyses with pulmonate snail intermediate hosts of other platyhelminths including schistosomes.
    PLoS Neglected Tropical Diseases 03/2014; 8(3):e2765. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species.
    PLoS ONE 01/2014; 9(3):e91591. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes. We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data. Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results. Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available.
    Parasites & Vectors 04/2014; 7(1):151. · 3.25 Impact Factor

Full-text (3 Sources)

View
87 Downloads
Available from
May 31, 2014