Article

Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates.

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
BMC Evolutionary Biology (Impact Factor: 3.29). 01/2010; 10:238. DOI: 10.1186/1471-2148-10-238
Source: PubMed

ABSTRACT The age of unisexual salamanders of the genus Ambystoma is contentious. Recent and ancient evolutionary histories of unisexual Ambystoma were proposed by a few separate studies that constructed phylogenies using mitochondrial DNA markers (cytochrome b gene vs. non-coding region). In contrast to other studies showing that unisexual Ambystoma represent the most ancient unisexual vertebrates, a recent study by Robertson et al. suggests that this lineage has a very recent origin of less than 25,000 years ago.
We re-examined the phylogenetic relationship of the unisexuals to A. barbouri from various populations using both mitochondrial markers as well as the complete mitochondrial genomes of A. barbouri and a unisexual individual from Kentucky. Lineage dating was conducted using BEAST and MultiDivTime on a complete mitochondrial genome phylogeny. Our results support a monophyletic lineage for unisexual Ambystoma that shares its most recent common ancestor with an A. barbouri lineage from western Kentucky. In contrast to the Robertson et al.'s study, no A. barbouri individual shared an identical or almost identical cytochrome b haplotype with any unisexual. Molecular dating supports an early Pliocene origin for the unisexual linage (approximately 5 million years ago). We propose that a unisexual-like cytochrome b numt (or pseudogene) exists in the controversial A. barbouri individuals from Kentucky, which was likely the cause of an erroneous phylogeny and time estimate in Robertson et al.'s study.
We reject a recent origin of unisexual Ambystoma and provide strong evidence that unisexual Ambystoma are the most ancient unisexual vertebrates known to exist. The likely presence of an ancient cytochrome b numt in some Kentucky A. barbouri represents a molecular "fossil" reinforcing the hypothesis that these individuals are some of the closest extant relatives to unisexual Ambystoma.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyploid animals have independently evolved from diploids in diverse taxa across the tree of life. We review a few polyploid animal species or biotypes where recently developed molecular and cytogenetic methods have significantly improved our understanding of their genetics, reproduction and evolution. Mitochondrial sequences that target the maternal ancestor of a polyploid show that polyploids may have single (e.g. unisexual salamanders in the genus Ambystoma) or multiple (e.g. parthenogenetic polyploid lizards in the genus Aspidoscelis) origins. Microsatellites are nuclear markers that can be used to analyze genetic recombinations, reproductive modes (e.g. Ambystoma) and recombination events (e.g. polyploid frogs such as Pelophylax esculentus). Hom(e)ologous chromosomes and rare intergenomic exchanges in allopolyploids have been distinguished by applying genome-specific fluorescent probes to chromosome spreads. Polyploids arise, and are maintained, through perturbations of the 'normal' meiotic program that would include pre-meiotic chromosome replication and genomic integrity of homologs. When possible, asexual, unisexual and bisexual polyploid species or biotypes interact with diploid relatives, and genes are passed from diploid to polyploid gene pools, which increase genetic diversity and ultimately evolutionary flexibility in the polyploid. When diploid relatives do not exist, polyploids can interact with another polyploid (e.g. species of African Clawed Frogs in the genus Xenopus). Some polyploid fish (e.g. salmonids) and frogs (Xenopus) represent independent lineages whose ancestors experienced whole genome duplication events. Some tetraploid frogs (P. esculentus) and fish (Squaliusalburnoides) may be in the process of becoming independent species, but diploid and triploid forms of these 'species' continue to genetically interact with the comparatively few tetraploid populations. Genetic and genomic interaction between polyploids and diploids is a complex and dynamic process that likely plays a crucial role for the evolution and persistence of polyploid animals. See also other articles in this themed issue.
    Cytogenetic and Genome Research 06/2013; · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We review the different modes of meiosis and its deviations encountered in polyploid animals. Bisexual reproduction involving normal meiosis occurs in some allopolyploid frogs with variable degrees of polyploidy. Aberrant modes of bisexual reproduction include gynogenesis, where a sperm stimulates the egg to develop. The sperm may enter the egg but there is no fertilization and syngamy. In hybridogenesis, a genome is eliminated to produce haploid or diploid eggs or sperm. Ploidy can be elevated by fertilization with a haploid sperm in meiotic hybridogenesis, which elevates the ploidy of hybrid offspring such that they produce diploid gametes. Polyploids are then produced in the next generation. In kleptogenesis, females acquire full or partial genomes from their partners. In pre-equalizing hybrid meiosis, one genome is transmitted in the Mendelian fashion, while the other is transmitted clonally. Parthenogenetic animals have a very wide range of mechanisms for restoring or maintaining the mother's ploidy level, including gamete duplication, terminal fusion, central fusion, fusion of the first polar nucleus with the product of the first division, and premeiotic duplication followed by a normal meiosis. In apomictic parthenogenesis, meiosis is replaced by what is effectively mitotic cell division. The above modes have different evolutionary consequences, which are discussed. See also the sister article by Grandont et al. in this themed issue.
    Cytogenetic and Genome Research 06/2013; · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unisexual sperm-dependent vertebrates are of hybrid origins, rare, and predicted to be short-lived as a result of several challenges arising from their mode of reproduction. In particular, because of a lack of recombination, clonal species are predicted to have a low potential to respond to natural selection. However, many unisexual sperm-dependent species persist, and assessing the genetic diversity present in these species is fundamental to understanding how they avoid extinction. We used population genomic methods to assess genotypic variation within the unisexual fish Poecilia formosa. Measures of admixture and population differentiation, as well as clustering analyses, indicate that the genomes of individuals of P. formosa are admixed and intermediate between Poecilia latipinna and Poecilia mexicana, consistent with the hypothesis of their hybrid origins. Bayesian genomic cline analyses indicate that about 12% of sampled loci exhibit patterns consistent with inheritance from only one parent. The estimation of observed heterozygosity clearly suggests that P. formosa is not comprised of direct descendants of a single nonrecombining asexual F1 hybrid individual. Additionally, the estimation of observed heterozygosity provides support for the hypothesis that the history of this unisexual species has included backcrossing with the parent species before the onset of gynogenesis. We also document high levels of variation among asexual individuals, which is attributable to recombination (historical or ongoing) and the accumulation of mutations. The high genetic variation suggests that this unisexual vertebrate has more potential to respond to natural selection than if they were frozen F1 hybrids.
    Proceedings of the National Academy of Sciences 08/2013; · 9.74 Impact Factor

Full-text (3 Sources)

View
21 Downloads
Available from
Jun 4, 2014