Article

Human genetic differentiation across the Strait of Gibraltar.

Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Anthropology, University of Geneva, Geneva, Switzerland.
BMC Evolutionary Biology (Impact Factor: 3.29). 01/2010; 10:237. DOI: 10.1186/1471-2148-10-237
Source: PubMed

ABSTRACT The Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci.
We show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation) across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa), which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant.
Our multi-loci approach using both descriptive analyses and Bayesian inferences lead to better characterize the role of the Strait of Gibraltar in the evolution of modern humans. We show that gene flow across the Strait of Gibraltar occurred at relatively high rates since pre-Neolithic times and that natural selection and sex-bias migrations distorted the demographic signal at some specific loci of our genome.

0 Bookmarks
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today.
    Research Journal of Immunology 01/2014; 2014:971818.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Population genetic studies may provide crucial information for our knowledge on human peopling history and have been extensively applied to reconstruct East Asian prehistory in the last 10 years. However, different genetic investigations are not always consistent with each other and some results are conflicting or misinterpreted. This represents a main obstacle for scholars of other disciplines like archaeologists and linguists who try to relate the genetic information on past human migrations to their own results on the spread of domesticated crops or animals or on the dispersal of the main language families. In this paper, we review the current genetic evidence related to the peopling history of East Asia with a critical view on some interpretations. In this way, we hope to provide a useful reference for further interdisciplinary studies on our past.
    Rice 12/2011; 4(3-4). · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review, we present for the first time an integrated version of the Gene[rate] computer tools which have been developed during the last 5 years to analyse human leukocyte antigen (HLA) data in human populations, as well as the results of their application to a large dataset of 145 HLA-typed population samples from Europe and its two neighbouring areas, North Africa and West Asia, now forming part of the Gene[va] database. All these computer tools and genetic data are, from now, publicly available through a newly designed bioinformatics platform, HLA-net, here presented as a main achievement of the HLA-NET scientific programme. The Gene[rate] pipeline offers user-friendly computer tools to estimate allele and haplotype frequencies, to test Hardy–Weinberg equilibrium (HWE), selective neutrality and linkage disequilibrium, to recode HLA data, to convert file formats, to display population frequencies of chosen alleles and haplotypes in selected geographic regions, and to perform genetic comparisons among chosen sets of population samples, including new data provided by the user. Both numerical and graphical outputs are generated, the latter being highly explicit and of publication quality. All these analyses can be performed on the pipeline after scrupulous validation of the population sample's characterisation and HLA typing reporting according to HLA-NET recommendations. The Gene[va] database offers direct access to the HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and -DPB1 frequencies and summary statistics of 145 population samples having successfully passed these HLA-NET ‘filters’, and representing three European subregions (South-East, North-East and Central-West Europe) and two neighbouring areas (North Africa, as far as Sudan, and West Asia, as far as South India). The analysis of these data, summarized in this review, shows a substantial genetic variation at the regional level in this continental area. These results have main implications for population genetics, transplantation and epidemiological studies.
    Tissue Antigens 05/2014; 83(5). · 2.93 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 23, 2014