Article

Genetic and household determinants of predisposition to human hookworm infection in a Brazilian community.

Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom.
The Journal of Infectious Diseases (Impact Factor: 5.85). 09/2010; 202(6):954-61. DOI: 10.1086/655813
Source: PubMed

ABSTRACT Predisposition to heavy or light human hookworm infection is consistently reported in treatment-reinfection studies. A significant role for host genetics in determining hookworm infection intensity has also been shown, but the relationship between host genetics and predisposition has not been investigated.
A treatment-reinfection study was conducted among 1302 individuals in Brazil. Bivariate variance components analysis was used to estimate heritability for pretreatment and reinfection intensity and to estimate the contribution of genetic and household correlations between phenotypes to the overall phenotypic correlation (ie, predisposition).
Heritability for hookworm egg count was 17% before treatment and 25% after reinfection. Predisposition to heavy or light hookworm infection was observed, with a phenotypic correlation of 0.34 between pretreatment and reinfection intensity. This correlation was reduced to 0.23 after including household and environmental covariates. Genetic and household correlations were 0.41 and 1, respectively, and explained 88% of the adjusted phenotypic correlation.
Predisposition to human hookworm infection in this area results from a combination of host genetics and consistent differences in exposure, with the latter explained by household and environmental factors. Unmeasured individual-specific differences in exposure did not contribute to predisposition.

0 Bookmarks
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.
    Nature Genetics 01/2014; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Children in rural areas experience the interrelated problems of poor growth, anemia and parasitic infections. We investigated the prevalence of and associations between intestinal helminth and protozoan infections, malnutrition and anemia in school-age Venezuelan children. This cross-sectional study was conducted in 390 children aged 4-16 years from three rural areas of Venezuela: the Amazon Region, Orinoco Delta and Carabobo State. Stool samples were collected for direct parasitic examinations. Anthropometric indicators of chronic (height-for-age Z score) and acute (weight-for-height and Body Mass Index (BMI)-for-age Z score in respectively children under 5 years of age and children aged 5 years and above) malnutrition were calculated. Multivariate linear and logistic regression models were built to determine factors associated with nutritional status and polyparasitism. Hookworm and Strongyloides stercoralis prevalences were highest in children from the Amazon rainforest (respectively 72% and 18%) while children from the Orinoco Delta and Carabobo State showed higher rates of Ascaris lumbricoides (respectively 28% and 37%) and Trichuris trichiura (40% in both regions). The prevalence of Giardia lamblia infection was not significantly different between regions (average: 18%). Anemia prevalence was highest in the Amazon Region (24%). Hemoglobin levels were significantly decreased in children with a hookworm infection. Malnutrition was present in respectively 84%, 30% and 13% of children from the Amazon Region, Orinoco Delta and Carabobo State. In multivariate analysis including all regions, G. lamblia and helminth infections were significantly and negatively associated with respectively height-for-age and weight-for-height/BMI-for-age Z scores. Furthermore, hemoglobin levels were positively associated with the height-for-age Z score (0.11, 95% CI 0.02 - 0.20). In rural populations in Venezuela helminthiasis and giardiasis were associated with acute and chronic nutritional status respectively. These data highlight the need for an integrated approach to control transmission of parasites and improve the health status of rural Venezuelan children.
    PLoS ONE 01/2013; 8(10):e77581. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-infection of individual hosts by multiple parasite species is a pattern that is very commonly observed in natural populations. Understanding the processes that generate these patterns poses a challenge. For example, it is difficult to discern the relative roles of exposure and susceptibility in generating the mixture and density of parasites within hosts. Yet discern them we must, if we are to design and deliver successful medical interventions for co-infected populations. Here, we synthesise an emergent understanding of how processes operate and interact to generate patterns of co-infection. We consider within-host communities (or infracommunities) generally, that is including not only classical parasites but also the microbiota that are so abundant on mucosal surfaces and which are increasingly understood to be so influential on host biology. We focus on communities that include a helminth, but we expect similar inferences to pertain to other taxa. We suggest that, thanks to recent research at both the within-host (e.g. immunological) and between-host (e.g. epidemiological) scales, researchers are poised to reveal the processes that generate the observed distribution of parasite communities among hosts. Progress will be facilitated by using new technologies as well as statistical and experimental tools to test competing hypotheses about processes that might generate patterns in co-infection data. By understanding the multiple interactions that underlie patterns of co-infection, we will be able to understand and intelligently predict how a suite of co-infections (and thus the host that bears them) will together respond to medical interventions as well as other environmental changes. The challenge for us all is to become scholars of co-infections.
    Advances in Parasitology 01/2013; 82:321-69. · 3.78 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 30, 2014