Radiation and smoking effects on lung cancer incidence among atomic bomb survivors.

Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan.
Radiation Research (Impact Factor: 2.45). 07/2010; 174(1):72-82. DOI: 10.1667/RR2083.1
Source: PubMed

ABSTRACT While radiation increases the risk of lung cancer among members of the Life Span Study (LSS) cohort of atomic bomb survivors, there are still important questions about the nature of its interaction with smoking, the predominant cause of lung cancer. Among 105,404 LSS subjects, 1,803 primary lung cancer incident cases were identified for the period 1958-1999. Individual smoking history information and the latest radiation dose estimates were used to investigate the joint effects of radiation and smoking on lung cancer rates using Poisson grouped survival regression methods. Relative to never-smokers, lung cancer risks increased with the amount and duration of smoking and decreased with time since quitting smoking at any level of radiation exposure. Models assuming generalized interactions of smoking and radiation fit markedly better than simple additive or multiplicative interaction models. The joint effect appeared to be super-multiplicative for light/moderate smokers, with a rapid increase in excess risk with smoking intensity up to about 10 cigarettes per day, but additive or sub-additive for heavy smokers smoking a pack or more per day, with little indication of any radiation-associated excess risk. The gender-averaged excess relative risk per Gy of lung cancer (at age 70 after radiation exposure at 30) was estimated as 0.59 (95% confidence interval: 0.31-1.00) for nonsmokers with a female : male ratio of 3.1. About one-third of the lung cancer cases in this cohort were estimated to be attributable to smoking while about 7% were associated with radiation. The joint effect of smoking and radiation on lung cancer in the LSS is dependent on smoking intensity and is best described by the generalized interaction model rather than a simple additive or multiplicative model.

1 Follower
  • 01/2012; The National Academies Press, Washington, D.C.., ISBN: 0-309-25305-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: Radiology is an essential technology in medicine and is used for organ diagnosis, radio-tracing and radiotherapy. The risks for the radiobiology workers are not assess sufficiently because measuring instruments fail to detect very low doses. This manuscript presents an investigation on the potential risks for radiobiology workers, due to the occupational exposure to low doses of irradiation. In this respect we used plasma samples from 16 subjects which were suppose to receive very low dose of irradiation in a longer time period. We used chromosomal aberrations, means of oxidative stress measurement and combined proteomics and bioinformatics in order to elucidate risks of such exposure. We found significant chromosome aberrations in lymphocytes and the increase of oxidative stress biomarkers in plasma. In addition the proteomic analysis shows differentially regulated proteins which three of them were verified by ELISA tests. This proteomic analysis picks out some interesting proteins that may belong to biomarkers panel of radiation exposure.
    International Journal of Low Radiation 03/2014; DOI:10.1504/IJLR.2014.060911
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Radiation Effects Research Foundation (RERF) studies various cohorts of Japanese atomic bomb survivors, the largest being the Life Span Study (LSS), which includes 93,741 persons who were in Hiroshima or Nagasaki at the times of the bombings; there are also cohorts of persons who were exposed in utero and survivors' children. This presentation attempts to summarize the total impact of the radiation from the bombs on the survivors from both an individual perspective (both age-specific and integrated lifetime risk, along with a measure of life expectancy that describes how the risk affects the individual given age at exposure) and a group perspective (estimated numbers of excess occurrences in the cohort), including both early and late effects. As survivors' doses ranged well into the acutely lethal range at closer distances, some of them experienced acute signs and symptoms of radiation exposure in addition to being at risk of late effects. Although cancer has always been a primary concern among late effects, estimated numbers of excess cancers and hematopoietic malignancies in the LSS are a small fraction of the total due to the highly skewed dose distribution, with most survivors receiving small doses. For example, in the latest report on cancer incidence, 853 of 17,448 incident solid cancers were estimated to be attributable to radiation from the bombs. RERF research indicates that risk of radiation-associated cancer varies among sites and that some benign tumors such as uterine myoma are also associated with radiation. Noncancer late effects appear to be in excess in proportion to radiation dose but with an excess relative risk about one-third that of solid cancer and a correspondingly small overall fraction of cases attributable to radiation. Specific risks were found for some subcategories, particularly circulatory disease, including stroke and precedent conditions such as hypertension. Radiation-related cataract in the atomic bomb survivors is well known, with evidence in recent years of risk at lower dose levels than previously appreciated. In addition to somatic effects, survivors experienced psychosocial effects such as uncertainty, social stigma, or rejection, and other social pressures. Developmental deficits associated with in utero exposure, notably cognitive impairment, have also been described. Interaction of radiation with other risk factors has been demonstrated in relation to both cancer and noncancer diseases. Current research interests include whether radiation increases risk of diabetes or conditions of the eye apart from cataract, and there continues to be keen interest as to whether there are heritable effects in survivors' children, despite negative findings to date. Introduction of Impact on the Japanese Atomic- Bomb Survivors (Video 1:52,
    Health physics 02/2014; 106(2):281-93. DOI:10.1097/HP.0000000000000009


1 Download
Available from