Article

Dibutyl phthalate contributes to the thyroid receptor antagonistic activity in drinking water processes.

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871 Beijing 100085, China.
Environmental Science & Technology (Impact Factor: 5.48). 09/2010; 44(17):6863-8. DOI: 10.1021/es101254c
Source: PubMed

ABSTRACT It has long been recognized that thyroid hormone (TH) is essential for normal brain development in both humans and animals, and there is growing evidence that environmental chemicals can disrupt the thyroid system. In the present work, we used a two-hybrid yeast assay to screen for agonistic or antagonistic thyroid receptor (TR) mediated effects in drinking waters. We found no TR agonistic, but TR antagonistic activities in all samples from the drinking water processes. The TR antagonistic activities in organic extracts of water samples were then calibrated regarding to a known TR-inhibitor, NH3, and were expressed as the NH3 equivalents (TEQbio). The observed TEQbio in waters ranged from 180.8+/-24.8 to 280.2+/-48.2 microg/L NH3. To identify the specific compounds responsible for TR disrupting activities, the concentrations of potentially thyroid-disrupting chemicals including organochlorine pesticides (OCPs), phenols, and phthalates in organic extracts were quantitatively determined and their toxic equivalents with respect to NH3 (TEQcal) were estimated from their concentration-dependent relationships, respectively, using the same set of bioassays. Based on the TEQ approach, it was revealed that dibutyl phthalate (DBP) accounted for 53.7+/-8.2% to 105.5+/-16.7% of TEQbio. There was no effective removal of these potential thyroid disrupting substances throughout drinking water treatment processes.

0 Bookmarks
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Exposure to environmental chemicals may play a role in the development of obesity. Evidence suggests phthalate exposure may be associated with obesity in children and adults. Objective To examine the association of ten urinary phthalate metabolites mono-n-butyl phthalate (MnBP), mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethylhexyl phthalate (MEHP), mono-benzyl phthalate (MBzP), mono-(carboxylnonyl) phthalate (MCNP), and mono-(carboxyoctyl) phthalate (MCOP) grouped by molecular weight of their parent compounds with body weight outcomes in children, adolescent and adult participants in the National Health and Nutrition Examination Survey (NHANES) 2007-2010. Methods We performed multinomial logistic regression to analyze the association between obesity and urinary phthalate metabolite concentrations in children and adolescents and adults. Results Low molecular weight (LMW) phthalate metabolites (MnBP, MEP and MiBP) are significantly (p < 0.05) associated with higher odds for obesity in male children and adolescents. High molecular weight (HMW) phthalate metabolites (MECPP, MEHHP, MEOHP, MEHP, MBzP, MCNP, and MCOP) and di-2-ethylhexyl phthalate (DEHP) metabolites (MEHHP, MEOHP, MEHP and MECPP) are significantly (p < 0.05) associated with higher OR for obesity in all adults. Additionally, DEHP metabolites are significantly associated with obesity in all female adults; whereas DEHP and HMW metabolites are significantly associated with OR for obesity in males 60 years and older. Conclusions We found age and sex differences in the association between urinary phthalate metabolite concentrations and body weight outcomes. Reverse causation cannot be excluded since overweight and obese people will have more fat mass, they may store more phthalates, thus leading to higher excretion concentrations.
    International journal of hygiene and environmental health 07/2014; · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormone (TH) has long been known to be essential for normal brain development in both humans and animals, and increasing evidence suggests that environmental components may disrupt TH signaling. In the present study, two-hybrid yeast bioassay and chemical analysis were used to evaluate and identify thyroid-receptor (TR) disruptors in water from the Guanting Reservoir, Beijing, China. Modified yeast bioassay showed that the water samples could affect TH signaling. The bioassay-derived amiodarone hydrochloride equivalents ranged from 33.8 ± 3.3 to 308.5 ± 31.8 µg/L. Solid-phase extraction was used to separate the organic extracts, which were subjected to bioassay and chemical analysis. The organic extracts significantly antagonized the TR, which accounted for >86.0 % of the total effects. Thus, organic extracts may play a major role in the TR-disruption activity of the water. Phenols, organochlorine pesticides, and phthalate esters were detected in the organic extracts. Chemical analysis and toxic-equivalent calculation showed that a major cause of the TR antagonism of the water was dibutyl phthalate (80.1 to 122.7 %).
    Archives of Environmental Contamination and Toxicology 04/2014; · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This 5-month study contains two parts: (1) to monitor the concentrations of 11 phthalate esters metabolites (PAEMs) and two beta-agonists in human urine samples collected from a small group of consented participants including 16 females and five males; and (2) to analyze the residues of phthalate esters (PAEs) and beta-agonists in various categories of drinking water consumed by the same group of subjects. Each category of human urine and drinking water had 183 samples of its own. The analytical results showed that nine PAEMs were detected in human urine and eight PAEs were detected in drinking water samples. It was found that average concentrations of PAEMs increased as the age increased, but no significant difference between sexes. Further, using the principal component analysis, the loadings of age effect were found to be two times greater than that of gender effect in terms of four DEHP metabolites. Regarding beta-agonists of concern (i.e., ractopamine and salbutamol), they were neither detected in human urine nor drinking water samples in this study.
    Journal of hazardous materials 02/2014; · 4.33 Impact Factor

Full-text

Download
12 Downloads
Available from
May 16, 2014