Variable loss of Kir4.1 channel function in SeSAME syndrome mutations

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455,USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 09/2010; 399(4):537-41. DOI: 10.1016/j.bbrc.2010.07.105
Source: PubMed

ABSTRACT SeSAME syndrome is a complex disease characterized by seizures, sensorineural deafness, ataxia, mental retardation and electrolyte imbalance. Mutations in the inwardly rectifying potassium channel Kir4.1 (KCNJ10 gene) have been linked to this condition. Kir4.1 channels are weakly rectifying channels expressed in glia, kidney, cochlea and possibly other tissues. We determined the electrophysiological properties of SeSAME mutant channels after expression in transfected mammalian cells. We found that a majority of mutations (R297C, C140R, R199X, T164I) resulted in complete loss of Kir4.1 channel function while two mutations (R65P and A167V) produced partial loss of function. All mutant channels were rescued upon co-transfection of wild-type Kir4.1 but not Kir5.1 channels. Cell-surface biotinylation assays indicate significant plasma membrane expression of all mutant channels with exception of the non-sense mutant R199X. These results indicate the differential loss of Kir channel function among SeSAME syndrome mutations.

  • Source
    • "Heterologous expression demonstrated that the mutations indeed affected Kir4.1 function and produced depolarization and reduced transmembrane currents (Bockenhauer et al., 2009; Reichold et al., 2010; Williams et al., 2010). The EAST/SeSAME syndrome-related decrease in K 1 conductance could not be rescued by co-expression with Kir5.1, and mutated Kir4.1 had no dominant-negative effect when co-expressing wildtype Kir4.1 (Tang et al., 2010). The mutations increased pH i -sensitivity of the channel and impeded its surface expression (Sala-Rabanal et al., 2010; Williams et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are endowed with the machinery to sense and respond to neuronal activity. Recent work has demonstrated that astrocytes play important physiological roles in the CNS, e.g., they synchronize action potential firing, ensure ion homeostasis, transmitter clearance and glucose metabolism, and regulate the vascular tone. Astrocytes are abundantly coupled through gap junctions, which is a prerequisite to redistribute elevated K(+) from sites of excessive neuronal activity to sites of lower extracellular K(+) concentration. Recent studies identified dysfunctional astrocytes as crucial players in epilepsy. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization, and function of astroglial inwardly rectifying K(+) (Kir) channels, particularly Kir4.1, which is suspected to entail impaired K(+) buffering. Gap junctions in astrocytes appear to play a dual role: on the one hand they counteract the generation of hyperactivity by facilitating clearance of elevated extracellular K(+) levels while in contrast, they constitute a pathway for energetic substrate delivery to fuel neuronal (hyper)activity. Recent work suggests that astrocyte dysfunction is causative of the generation or spread of seizure activity. Thus, astrocytes should be considered as promising targets for alternative antiepileptic therapies.
    Glia 08/2012; 60(8):1192-202. DOI:10.1002/glia.22313 · 6.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SeSAME/EAST syndrome is a channelopathy consisting of a hypokalemic, hypomagnesemic, metabolic alkalosis associated with seizures, sensorineural deafness, ataxia, and developmental abnormalities. This disease links to autosomal recessive mutations in KCNJ10, which encodes the Kir4.1 potassium channel, but the functional consequences of these mutations are not well understood. In Xenopus oocytes, all of the disease-associated mutant channels (R65P, R65P/R199X, G77R, C140R, T164I, and A167V/R297C) had decreased K(+) current (0 to 23% of wild-type levels). Immunofluorescence demonstrated decreased surface expression of G77R, C140R, and A167V expressed in HEK293 cells. When we coexpressed mutant and wild-type subunits to mimic the heterozygous state, R199X, C140R, and G77R currents decreased to 55, 40, and 20% of wild-type levels, respectively, suggesting that carriers of these mutations may present with an abnormal phenotype. Because Kir4.1 subunits can form heteromeric channels with Kir5.1, we coexpressed the aforementioned mutants with Kir5.1 and found that currents were reduced at least as much as observed when we expressed mutants alone. Reduction of pH(i) from approximately 7.4 to 6.8 significantly decreased currents of all mutants except R199X but did not affect wild-type channels. In conclusion, perturbed pH gating may underlie the loss of channel function for the disease-associated mutant Kir4.1 channels and may have important physiologic consequences.
    Journal of the American Society of Nephrology 11/2010; 21(12):2117-29. DOI:10.1681/ASN.2009121227 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inwardly rectifying potassium channel Kir4.1 is critical for glial function, control of neuronal excitability, and systemic K(+) homeostasis. Novel mutations in Kir4.1 have been associated with EAST/SeSAME syndrome, characterized by mental retardation, ataxia, seizures, hearing loss, and renal salt waste. Patients are homozygous for R65P, G77R, C140R or T164I; or compound heterozygous for A167V/R297C or R65P/R199Stop, a deletion of the C-terminal half of the protein. We investigated the functional significance of these mutations by radiotracer efflux and inside-out membrane patch clamping in COSm6 cells expressing homomeric Kir4.1 or heteromeric Kir4.1/Kir5.1 channels. All of the mutations compromised channel function, but the underlying mechanisms were different. R65P, T164I, and R297C caused an alkaline shift in pH sensitivity, indicating that these positions are crucial for pH sensing and pore gating. In R297C, this was due to disruption of intersubunit salt bridge Glu(288)-Arg(297). C140R breaks the Cys(108)-Cys(140) disulfide bond essential for protein folding and function. A167V did not affect channel properties but may contribute to decreased surface expression in A167V/R297C. In G77R, introduction of a positive charge within the bilayer may affect channel structure or gating. R199Stop led to a dramatic decrease in surface expression, but channel activity was restored by co-expression with intact subunits, suggesting remarkable tolerance for truncation of the cytoplasmic domain. These results provide an explanation for the molecular defects that underlie the EAST/SeSAME syndrome.
    Journal of Biological Chemistry 11/2010; 285(46):36040-8. DOI:10.1074/jbc.M110.163170 · 4.57 Impact Factor
Show more


Available from