Article

An intraocular lens power calculation formula based on optical coherence tomography: a pilot study.

Center for Ophthalmic Optics and Lasers, Doheny Eye Institute, Los Angeles, Calif., USA.
Journal of refractive surgery (Thorofare, N.J.: 1995) (Impact Factor: 2.47). 06/2010; 26(6):430-7. DOI: 10.3928/1081597X-20090710-02
Source: PubMed

ABSTRACT To develop an intraocular lens (IOL) power calculation formula based on optical coherence tomography (OCT) that would not be biased by previous laser vision correction.
Twenty-seven eyes of 27 cataract patients without prior laser vision correction who underwent phacoemulsification were included in the study. An optical coherence biometer (IOLMaster, Carl Zeiss Meditec) measured anterior corneal curvature and axial eye length. A high-speed (2000 Hz) anterior segment OCT prototype mapped corneal thickness and measured anterior chamber depth and crystalline lens thickness. Posterior corneal curvature was computed by combining IOLMaster keratometry with OCT corneal thickness mapping. A new IOL formula was developed based on these parameters. One month after phacoemulsification, the manifest refraction spherical equivalent (MRSE) was measured. The prediction error in postoperative MRSE of the OCT-based IOL formula was compared with that of three theoretic formulae: SRK/T, Hoffer Q, and Holladay II.
The mean prediction error in postoperative MRSE of the OCT-based formula was 0.04+/-0.44 diopters (D). The SRK/T was the best of the theoretic formulae, and its prediction error was -0.35+/-0.42 D. Twenty-one (78%) eyes were within 0.50 D using the OCT formula compared to 18 (67%) eyes using the SRK/T. No statistically significant differences were noted among the formulae.
For cataract patients without prior laser vision correction, the OCT-based IOL formula was as accurate as the current theoretic formulae. This new formula is based on direct OCT assessment of the posterior curvature and avoids the calculation errors inherent in conventional IOL formulae.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the error in the estimation of axial length (AL) with the IOLMaster partial coherence interferometry (PCI) biometer and obtain a correction factor that varies as a function of AL and crystalline lens thickness (LT). Optical simulations were produced for theoretical eyes using Zemax-EE software. Thirty-three combinations including eleven different AL (from 20mm to 30mm in 1mm steps) and three different LT (3.6mm, 4.2mm and 4.8mm) were used. Errors were obtained comparing the AL measured for a constant equivalent refractive index of 1.3549 and for the actual combinations of indices and intra-ocular dimensions of LT and AL in each model eye. In the range from 20mm to 30mm AL and 3.6-4.8mm LT, the instrument measurements yielded an error between -0.043mm and +0.089mm. Regression analyses for the three LT condition were combined in order to derive a correction factor as a function of the instrument measured AL for each combination of AL and LT in the theoretical eye. The assumption of a single "average" refractive index in the estimation of AL by the IOLMaster PCI biometer only induces very small errors in a wide range of combinations of ocular dimensions. Even so, the accurate estimation of those errors may help to improve accuracy of intra-ocular lens calculations through exact ray tracing, particularly in longer eyes and eyes with thicker or thinner crystalline lenses.
    Journal of Optometry 04/2014; 7(2):75-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the refractive outcomes of intraocular lens (IOL) power calculation by ray-tracing after myopic excimer laser surgery. Prospective, interventional case series. setting: Multicenter study. participants: Twenty-one eyes of 21 patients undergoing phacoemulsification and IOL implantation after myopic laser in situ keratomileusis or photorefractive keratectomy were enrolled. intervention: IOL power calculation was performed using internal software of a Scheimpflug camera combined with a Placido disc corneal topographer (Sirius; CSO). Exact ray-tracing was carried out after the axial length (measured either by immersion ultrasound biometry or partial coherence interferometry), target refraction, and pupil size had been entered. main outcome measures: Median absolute error, mean absolute error, and mean arithmetic error in refraction prediction, that is, the difference between the expected refraction (as calculated by the software) and the actual refraction 1 month after surgery. The mean postoperative refraction was -0.43 ± 1.08 diopters (D), with a range between -1.28 and 0.85 D. The mean arithmetic error was -0.13 ± 0.49 D. The median and mean absolute errors were +0.25 D and 0.36 D, respectively. Also, 71.4% of the eyes were within ± 0.50 D of the predicted refraction, 85.7% were within ± 1.00 D, and 100% within ± 1.50 D. Ray-tracing can calculate IOL power accurately in eyes with prior myopic laser in situ keratomileusis and photorefractive keratectomy, with no need for preoperative data.
    American Journal of Ophthalmology 10/2013; · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To use optical coherence tomography (OCT) to measure corneal power and improve the selection of intraocular lens (IOL) power in cataract surgeries after laser vision correction. Patients with previous myopic laser vision corrections were enrolled in this prospective study from two eye centers. Corneal thickness and power were measured by Fourier-domain OCT. Axial length, anterior chamber depth, and automated keratometry were measured by a partial coherence interferometer. An OCT-based IOL formula was developed. The mean absolute error of the OCT-based formula in predicting postoperative refraction was compared to two regression-based IOL formulae for eyes with previous laser vision correction. Forty-six eyes of 46 patients all had uncomplicated cataract surgery with monofocal IOL implantation. The mean arithmetic prediction error of postoperative refraction was 0.05 ± 0.65 diopter (D) for the OCT formula, 0.14 ± 0.83 D for the Haigis-L formula, and 0.24 ± 0.82 D for the no-history Shammas-PL formula. The mean absolute error was 0.50 D for OCT compared to a mean absolute error of 0.67 D for Haigis-L and 0.67 D for Shammas-PL. The adjusted mean absolute error (average prediction error removed) was 0.49 D for OCT, 0.65 D for Haigis-L (P=.031), and 0.62 D for Shammas-PL (P=.044). For OCT, 61% of the eyes were within 0.5 D of prediction error, whereas 46% were within 0.5 D for both Haigis-L and Shammas-PL (P=.034). The predictive accuracy of OCT-based IOL power calculation was better than Haigis-L and Shammas-PL formulas in eyes after laser vision correction.
    Transactions of the American Ophthalmological Society 09/2013; 111:34-45.

Full-text

Download
2 Downloads
Available from