Formulation of microneedles coated with influenza virus-like particle vaccine.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, USA.
AAPS PharmSciTech (Impact Factor: 1.78). 09/2010; 11(3):1193-201. DOI: 10.1208/s12249-010-9471-3
Source: PubMed

ABSTRACT Mortality due to seasonal and pandemic influenza could be reduced by increasing the speed of influenza vaccine production and distribution. We propose that vaccination can be expedited by (1) immunizing with influenza virus-like particle (VLP) vaccines, which are simpler and faster to manufacture than conventional egg-based inactivated virus vaccines, and (2) administering vaccines using microneedle patches, which should simplify vaccine distribution due to their small package size and possible self-administration. In this study, we coated microneedle patches with influenza VLP vaccine, which was released into skin by dissolution within minutes. Optimizing the coating formulation required balancing factors affecting the coating dose and vaccine antigen stability. Vaccine stability, as measured by an in vitro hemagglutination assay, was increased by formulation with increased concentration of trehalose or other stabilizing carbohydrate compounds and decreased concentration of carboxymethylcellulose (CMC) or other viscosity-enhancing compounds. Coating dose was increased by formulation with increased VLP concentration, increased CMC concentration, and decreased trehalose concentration, as well as increased number of dip coating cycles. Finally, vaccination of mice using microneedles stabilized by trehalose generated strong antibody responses and provided full protection against high-dose lethal challenge infection. In summary, this study provides detailed analysis to guide formulation of microneedle patches coated with influenza VLP vaccine and demonstrates effective vaccination in vivo using this system.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstact Context: Gene guns have been used to deliver deoxyribonucleic acid (DNA) loaded micro-particle and breach the muscle tissue to target cells of interest to achieve gene transfection. Objective: This article aims to discuss the potential of microneedle (MN) assisted micro-particle delivery from gene guns, with a view to reducing tissue damage. Methods: Using a range of sources, the main gene guns for micro-particle delivery are reviewed along with the primary features of their technology, e.g. their design configurations, the material selection of the micro-particle, the driving gas type and pressure. Depending on the gene gun system, the achieved penetration depths in the skin are discussed as a function of the gas pressure, the type of the gene gun system and particle size, velocity and density. The concept of MN-assisted micro-particles delivery which consists of three stages (namely, acceleration, separation and decoration stage) is discussed. In this method, solid MNs are inserted into the skin to penetrate the epidermis/dermis layer and create holes for particle injection. Several designs of MN array are discussed and the insertion mechanism is explored, as it determines the feasibility of the MN-based system for particle transfer. Results: This review suggests that one of the problems of gene guns is that they need high operating pressures, which may result in direct or indirect tissue/cells damage. MNs seem to be a promising method which if combined with the gene guns may reduce the operating pressures for these devices and reduce tissue/cell damages. Conclusions: There is sufficient potential for MN-assisted particle develivery systems.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. Areas covered: In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. Expert opinion: The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases.
    Expert Opinion on Drug Delivery 02/2014; · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The work presented demonstrates an unconventional approach in the preparation of smart microneedle (MN) coatings utilising electrohydrodynamic atomisation (EHDA) principles. Stainless steel (600-900 µm in height) MNs were coupled to a ground electrode (in the EHDA coating set-up) with the deposition distance and collecting methodology varied for an ethanol:methanol (50:50) vehicle system. The preparation of nano- and micrometre-scaled pharmaceutical coatings was achieved. Fluorescein dye (serving as potential drug, sensory materials or disease state markers) and polyvinylpyrrolidone (PVP, polymer matrix system) formed the remaining components of the coating formulation. Based on these excipients and by varying the coating process, particles (100 nm to 3 µm) and fibres (400 nm to 1 µm) were deposited directly on MNs in controlled and selectable fashion (flow rates variable ∼5-50 µL/min, applied voltage variable 6-19 kV). These demonstrated options for multiple targeting and analysis applications. The underlying EHDA process permits room temperature fabrication, controlled output and scale-up potential for emerging MN devices as drug systems or lab-chip testing devices.
    Journal of Drug Targeting 06/2014; · 2.72 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014