Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte Brazil.
Frontiers in Neuroanatomy (Impact Factor: 4.06). 01/2010; 4:26. DOI: 10.3389/fnana.2010.00026
Source: PubMed

ABSTRACT Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H1R) activation. RESULTS: Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H1R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H1R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H1R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H1R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection. CONCLUSION: These results show that HA, by activating H1R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation of FGFR1 participate in HA-induced neuronal differentiation to FOXP2 cells in vitro; furthermore, H1R blockade in vivo resulted in decreased cortical FOXP2+ neurons.
    Neural Development 03/2013; 8(1):4. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.
    Neuron 06/2012; 74(6):1045-58. · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: During development neurons are generated by sequential divisions of neural stem cells, or neuroblasts. In the insect brain progeny of certain stem cells form lineage-specific sets of projections that arborize in distinct brain regions, called clonal units. Though this raises the possibility that the entire neural network in the brain might be organized in a clone-dependent fashion, only a small portion of clones has been identified. RESULTS: Using Drosophila melanogaster, we randomly labeled one of about 100 stem cells at the beginning of the larval stage, analyzed the projection patterns of their progeny in the adult, and identified 96 clonal units in the central part of the fly brain, the cerebrum. Neurons of all the clones arborize in distinct regions of the brain, though many clones feature heterogeneous groups of neurons in terms of their projection patterns and neurotransmitters. Arborizations of clones overlap preferentially to form several groups of closely associated clones. Fascicles and commissures were all made by unique sets of clones. Whereas well-investigated brain regions such as the mushroom body and central complex consist of relatively small numbers of clones and are specifically connected with a limited number of neuropils, seemingly disorganized neuropils surrounding them are composed by a much larger number of clones and have extensive specific connections with many other neuropils. CONCLUSIONS: Our study showed that the insect brain is formed by a composition of cell-lineage-dependent modules. Clonal analysis reveals organized architecture even in those neuropils without obvious structural landmarks.
    Current biology: CB 03/2013; · 10.99 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014