Article

Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency.

Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853-6401, USA.
Oncogene (Impact Factor: 8.56). 10/2010; 29(42):5700-11. DOI: 10.1038/onc.2010.300
Source: PubMed

ABSTRACT Genetically defined mouse models offer an important tool to identify critical secondary genetic alterations with relevance to human cancer pathogenesis. We used newly generated MMTV-Cre105Ayn mice to inactivate p53 and/or Rb strictly in the mammary epithelium, and to determine recurrent genomic changes associated with deficiencies of these genes. p53 inactivation led to formation of estrogen receptor-positive raloxifene-responsive mammary carcinomas with features of luminal subtype B. Rb deficiency was insufficient to initiate carcinogenesis but promoted genomic instability and growth rate of neoplasms associated with p53 inactivation. Genome-wide analysis of mammary carcinomas identified a recurrent amplification at chromosome band 9A1, a locus orthologous to human 11q22, which contains protooncogenes cIAP1 (Birc2), cIAP2 (Birc3) and Yap1. It is interesting that this amplicon was preferentially detected in carcinomas carrying wild-type Rb. However, all three genes were overexpressed in carcinomas with p53 and Rb inactivation, likely due to E2F-mediated transactivation, and cooperated in carcinogenesis according to gene knockdown experiments. These findings establish a model of luminal subtype B mammary carcinoma, identify critical role of cIAP1, cIAP2 and Yap1 co-expression in mammary carcinogenesis and provide an explanation for the lack of recurrent amplifications of cIAP1, cIAP2 and Yap1 in some tumors with frequent Rb deficiency, such as mammary carcinoma.

1 Bookmark
 · 
60 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, a cell's decision to divide is thought to be under the control of the Rb/E2F pathway. We previously found that inactivation of the Rb family of cell cycle inhibitors (Rb, p107, and p130) in quiescent liver progenitors leads to uncontrolled division and cancer initiation. Here, we show that, in contrast, deletion of the entire Rb gene family in mature hepatocytes is not sufficient for their long-term proliferation. The cell cycle block in Rb family mutant hepatocytes is independent of the Arf/p53/p21 checkpoint but can be abrogated upon decreasing liver size. At the molecular level, we identify YAP, a transcriptional regulator involved in organ size control, as a factor required for the sustained expression of cell cycle genes in hepatocytes. These experiments identify a higher level of regulation of the cell cycle in vivo in which signals regulating organ size are dominant regulators of the core cell cycle machinery.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRCA1 mutation carriers are predisposed to developing basal-like breast cancers with high metastasis and poor prognosis. Yet how BRCA1 suppresses formation of basal-like breast cancers is still obscure. Deletion of p18Ink4c (p18), an inhibitor of CDK4 and CDK6, functionally inactivates the RB pathway, stimulates mammary luminal stem cell proliferation, and leads to spontaneous luminal tumor development. Alternately, germline mutation of Brca1 shifts the fate of luminal cells to cause luminal-to-basal mammary tumor transformation. Here we report that disrupting Brca1 by either germline or epithelium-specific mutation in p18-deficient mice activates epithelial-to-mesenchymal transition (EMT) and induces dedifferentiation of luminal stem cells (LSCs), which associate closely with expansion of basal and cancer stem cells and formation of basal-like tumors. Mechanistically, BRCA1 bound to the TWIST promoter, suppressing its activity and inhibiting EMT in mammary tumor cells. In human luminal cancer cells, BRCA1 silencing was sufficient to activate TWIST and EMT and increase tumor formation. In parallel, TWIST expression and EMT features correlated inversely with BRCA1 expression in human breast cancers. Together, our findings showed that BRCA1 suppressed TWIST and EMT, inhibited LSC dedifferentiation and repressed expansion of basal stem cells and basal-like tumors. Thus, our work offers the first genetic evidence that Brca1 directly suppresses EMT and LSC de-differentiation during breast tumorigenesis.
    Cancer Research 09/2014; 74(21). DOI:10.1158/0008-5472.CAN-14-1119 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.
    12/2012; 1(4):711-37. DOI:10.3390/cells1040711

Full-text (2 Sources)

Download
14 Downloads
Available from
May 23, 2014