Article

Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains.

INSERM, U823, Université Joseph Fourier-Grenoble 1, Institut Albert Bonniot, Grenoble, France.
The EMBO Journal (Impact Factor: 10.75). 09/2010; 29(17):2943-52. DOI: 10.1038/emboj.2010.176
Source: PubMed

ABSTRACT In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4-NUT released p300 and restored p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off-context activity of a testis-specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation.

Download full-text

Full-text

Available from: Daniel Panne, Jun 24, 2015
0 Followers
 · 
262 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BRD4 is implicated in the pathogenesis of a number of different cancers. It is also the target of translocation t(15;19) that accounts for the highly aggressive NUT midline carcinoma (NMC). We discovered that t(15;19) NMC cells display the ability to grow into stem cell-like spheres and express an exceptionally high level of the stem cell marker, SOX2. The BRD4-NUT fusion oncogene resulting from t(15;19) translocation is required for the abnormal activation of SOX2, which drives the stem cell-like proliferation and cellular transformation in NMC cells. SOX2 knockdown phenocopies the effects of BRD4-NUT inhibition, whereas ectopic SOX2 expression rescues the phenotype. The BRD4-NUT induced abnormal SOX2 activation was observed in multiple NMC cell lines as well as in NMC primary tumors. We further demonstrate that BRD4-NUT oncoprotein recruits p300 to stimulate transcription activation, and that inhibition of p300 represses SOX2 transcription in NMC cells. These studies identify this stem cell marker as a novel BRD4-NUT target that supports the highly aggressive transforming activity of t(15;19) carcinomas. Our study provides new mechanistic insights for understanding how alteration of BRD4 function by BRD4-NUT oncogene leads to the highly malignant NMC carcinoma. Because abnormal stem cell self-renewal is frequently observed during tumor formation and metastasis, the aberrant stem cell-like proliferation associated with BRD4 dysregulation observed in NMC carcinoma may have implications for studying the oncogenic mechanism of other BRD4-associated tumors.
    Cancer Research 04/2014; 74(12). DOI:10.1158/0008-5472.CAN-13-2658 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three decades of research into p300/CBP, since the first report in 1985, have revealed its importance to normal cell health and etiology of disease. p300/CBP is a key enzyme in higher eukaryotes, where it acts as an effector in myriad major cellular signaling pathways, which modulate protein functions and gene expression in response to a variety of signals. This is accomplished by binding of over 400 protein ligands to its various protein interaction-mediating domains and the acetylation of ∼100 protein substrates. The unusual hit-and-run kinetic mechanism has permitted the identification of p300/CBP-specific acetyltransferase inhibitors, which have shown promising effects in studies in living cells. The protein acetylation and protein binding functions of p300/CBP are intricately interrelated, and both are targets of pharmacological interventions that may have considerable therapeutic applications.
    Chemical Reviews 01/2015; 115(6). DOI:10.1021/cr500452k · 45.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rare childhood cancers have not benefited to the same extent from the gains that have been made for their frequently occurring counterparts. In recent years, this gap has been recognized and a number of vehicles now exist to improve outcome, including rare tumor groups, disease-specific registries, and clinics. The multitude of approaches has allowed significant progress, however, this framework is limited by patient number and is not inclusive for every type of rare childhood cancer. These shortcomings can be overcome by a single global unified approach to the study of rare childhood tumors. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
    Cancer Medicine 02/2015; DOI:10.1002/cam4.426