Article

Retinoid X receptors: common heterodimerization partners with distinct functions.

Université du Droit et de la Santé de Lille - Nord de France.
Trends in Endocrinology and Metabolism (Impact Factor: 8.87). 11/2010; 21(11):676-83. DOI: 10.1016/j.tem.2010.06.009
Source: PubMed

ABSTRACT Retinoid X receptors (RXRs) have been implicated in a diversity of cellular processes ranging from cellular proliferation to lipid metabolism. These pleiotropic effects stem not only from the ability of RXRs to dimerize with diverse nuclear receptors, which exert transcriptional control on specific aspects of cell biology, but also because binding of RXR ligands to heterodimers can stimulate transcriptional activation by RXR partner receptors. This signaling network is rendered more complex by the existence of different RXR isotypes (RXRα, RXRβ, RXRγ) with distinct properties that thereby modulate the transcriptional activity of RXR-containing heterodimers. This review discusses the emerging roles of RXR isotypes in the RXR signaling network and possible implications for our understanding of nuclear receptor biology and pharmacology.

Download full-text

Full-text

Available from: Yacir Benomar, Jun 19, 2015
0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Firemaster® 550 (FM 550) is a mixture of brominated and triarylphosphate flame retardants used in polyurethane foam-based products. The primary components are also used in numerous other applications and are thus common household and industrial contaminants. Our previous animal studies suggested that FM 550 exposure may alter metabolism and cause weight gain. Employing human nuclear receptor (NR) luciferase reporter assays, the goal of this study was to evaluate the agonist actions of FM 550 and its constituent compounds at NRs with known roles in establishing or regulating energy balance. FM 550 was found to have significant agonist activity only at the master regulator of adipocyte differentiation PPARγ. As a result, the concentration response relationships and relative activities of FM 550 at PPARγ were investigated in more detail with the contribution of each chemical component defined and compared to the activities of the prototypical PPARγ environmental ligands triphenyltin and tributylytin. The resulting data indicated that the primary metabolic disruptive effects of FM 550 were likely mediated by the activity of the triarylphosphates at PPARγ, and have identified TPP as a candidate metabolic disruptor that also acts as a cytotoxicant.
    Toxicology Letters 07/2014; 228(2). DOI:10.1016/j.toxlet.2014.04.017 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin A and its derivatives have been shown to modulate the immune system via retinoic acid receptor (RAR). This study explored the impact of retinyl palmitate supplementation on RAR subtype gene expression in peripheral blood mononuclear cells (PBMCs) in multiple sclerosis (MS) patients. The study designed as a double-blind randomized clinical trial in which relapsing remitting multiple sclerosis patients were evaluated. Both groups received one capsule 50,000 IU vitamin D3 per 2 weeks and one intramuscular injection interferon beta-1a per week. The intervention group received one 25,000 IU retinyl palmitate capsule daily for 6 months and the placebo group received one placebo capsule daily. The PBMCs were isolated from participants and the expression level changes of RAR-α and RAR-γ genes were determined by real-time PCR. After supplementation, in the intervention group, the RAR-α gene expression level was significantly decreased compared to the placebo group (p = 0.03); however, the expression of RAR-γ gene did not significantly change (p = 0.10). These results show that vitamin A supplementation can significantly downregulate the expression of RAR-α gene in PBMCs of MS patients that suggest the presence of in vivo regulatory mechanisms for the action of vitamin A on the immune system.
    Journal of Molecular Neuroscience 08/2013; 51(2). DOI:10.1007/s12031-013-0090-9 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this 'nonmodel' species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator-activated receptor (PPAR) pathways. Application of rosiglitazone, a well-known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT-induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR-responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption.
    Molecular Ecology 12/2012; 22(6). DOI:10.1111/mec.12137 · 5.84 Impact Factor