Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephthalate blend fibers.

Polymer Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Tissue Engineering Part A (Impact Factor: 4.64). 12/2010; 16(12):3821-30. DOI: 10.1089/ten.TEA.2009.0520
Source: PubMed

ABSTRACT Although tissue-engineered scaffolds made from collagen sponge are suitable for cell infiltrating, easily supplying oxygen and nutrients to cells, and removing the waste products, their mechanical properties are not satisfactory to be used as scaffold materials for tissue engineering applications. To improve mechanical properties of collagen, a novel porous scaffold for bone tissue engineering was prepared with collagen sponge reinforced by polypropylene/polyethylene terephthalate (PP/PET) fibers. Collagen solution (6.33 mg/mL) with PP/PET fibers (collagen/fiber ratio [w/w]: 1.27, 0.63, 0.42, 0.25) was freeze-dried, followed by cross-linking of combined dehydrothermal and glutaraldehyde. A scanning electron microscopy-based analysis of surface of the sponges demonstrated that the sponge with collagen/fiber <0.25 exhibited homogenous and interconnected pore structure with an average pore size of 200 μm. Incorporation of PP/PET fibers significantly enhanced the compressive strength of the collagen sponge. Proliferation and osteogenic differentiation of mesenchymal stem cell in collagen sponges reinforced with PP/PET fibers incorporation were significantly enhanced compared with collagen sponge without PP/PET incorporation. We conclude that incorporation of PP/PET fibers not only improves the mechanical properties of collagen sponge, but also enables mesenchymal stem cells to positively improve their proliferation and differentiation.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering.
    International Journal of Molecular Sciences 10/2014; 15(10):17938-17962. DOI:10.3390/ijms151017938 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nasal surgery is a constellation of operations that are intended to restore form and function to the nose. The amount of augmentation required for a given case is a delicate interplay between patient aesthetic desires and corrective measures taken for optimal nasal airflow. Traditional surgical techniques make use of autologous donor tissue or implanted alloplastic materials to restore nasal deficits. Limited availability of donor tissue and associated harvest site morbidity have pushed surgeons and researchers to investigate methods to bioengineer nasal tissues. For this article, we conducted a review of the literature on regenerative medicine as it pertains to nasal surgery. PubMed was searched for articles dating from January 1, 1994, through August 1, 2014. Journal articles with a focus on regenerative medicine and nasal tissue engineering are included in this review. Our search found that the greatest advancements have been in the fields of mucosal and cartilage regeneration, with a growing body of literature to attest to its promise. With recent advances in bioscaffold fabrication, bioengineered cartilage quality, and mucosal regeneration, the transition from comparative animal models to more expansive human studies is imminent. Each of these advancements has exciting implications for treating patients with increased efficacy, safety, and satisfaction. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
    Mayo Clinic Proceedings 01/2015; 90(1):148-158. DOI:10.1016/j.mayocp.2014.10.002 · 5.81 Impact Factor
  • Source
    International Journal of Healthcare Technology and Management 01/2014; 14(3):194. DOI:10.1504/IJHTM.2014.064247