Laminin-332 cleavage by matriptase alters motility parameters of prostate cancer cells

Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
The Prostate (Impact Factor: 3.57). 02/2011; 71(2):184-96. DOI: 10.1002/pros.21233
Source: PubMed

ABSTRACT Matriptase, a type II transmembrane serine protease, has been linked to initiation and promotion of epidermal carcinogenesis in a murine model, suggesting that deregulation of its role in epithelia contributes to transformation. In human prostate cancer, matriptase expression correlates with progression. It is therefore of interest to determine how matriptase may contribute to epithelial neoplastic progression. One approach for studying this is to identify potential matriptase substrates involved in epithelial integrity and/or transformation like the extracellular matrix macromolecule, laminin-332 (Ln-332), which is found in the basement membrane of many epithelia, including prostate. Proteolytic processing of Ln-332 regulates cell motility of both normal and transformed cells, which has implications in cancer progression.
In vitro cleavage experiments were performed with purified Ln-332 protein and matriptase. Western blotting, enzyme inhibition assays, and mass spectrometry were used to confirm cleavage events. Matriptase overexpressing LNCaP prostate cancer cells were generated and included in Transwell migration assays and single cell motility assays, along with other prostate cells.
We report that matriptase proteolytically cleaves Ln-332 in the β3 chain. Substrate specificity was confirmed by blocking cleavage with the matriptase inhibitor, Kunitz domain-1. Transwell migration assays showed that DU145 cell motility was significantly enhanced when plated on matriptase-cleaved Ln-332. Similarly, Transwell migration of matriptase-overexpressing LNCaP cells was significantly increased on Ln-332 and, as determined by live single-cell microscopy, two motility parameters of this cell line, speed and directional persistence, were also higher.
Proteolytic processing of Ln-332 by matriptase enhances speed and directional persistence of prostate cancer cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser(473), which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.
    Neoplasia (New York, N.Y.) 07/2011; 13(7):579-89. DOI:10.1593/neo.11294 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is one of the most common tumor diseases worldwide. Often being non-aggressive, prostate tumors in these cases do not need immediate treatment. However, about 20% of diagnosed prostate cancers tend to metastasize and require treatment. Existing diagnostic methods may fail to accurately recognize the transition of a dormant, non-aggressive tumor into highly malignant prostate cancer. Therefore, new diagnostic tools are needed to improve diagnosis and therapy of prostate carcinoma. This review evaluates existing methods to diagnose prostate carcinoma, such as the biochemical marker prostate-specific antigen (PSA), but also discusses the possibility to use the altered expression of integrins and laminin-332 in prostate carcinomas as diagnostic tools and therapeutic targets of prostate cancer.
    12/2011; 3(1):883-96. DOI:10.3390/cancers3010883
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matriptase is regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Quantitative mass spectrometry allowed us to show that, in selected cancers, HAI-1 expression decreases, leading to active matriptase. A preclinical probe specific for the measurement of emergent active matriptase was developed. Using an active-site-specific, recombinant human antibody for matriptase, we found that the selective targeting of active matriptase can be used to visualize the tumorigenic epithelium. Live-cell fluorescence imaging validated the selectivity of the antibody in vitro by showing that the probe localized only to cancer cell lines with active matriptase on the surface. Immunofluorescence with the antibody documented significant levels of active matriptase in 68% of primary and metastatic colon cancer sections from tissue microarrays. Labeling of the active form of matriptase in vivo was measured in human colon cancer xenografts and in a patient-derived xenograft model using near-infrared and single-photon emission computed tomography imaging. Tumor uptake of the radiolabeled antibody, (111)In-A11, by active matriptase was high in xenografts (28% injected dose per gram) and was blocked in vivo by the addition of a matriptase-specific variant of ecotin. These findings suggest, through a HAI-1-dependent mechanism, that emergent active matriptase is a functional biomarker of the transformed epithelium and that its proteolytic activity can be exploited to noninvasively evaluate tumorigenesis in vivo.
    Proceedings of the National Academy of Sciences 12/2012; 110(1). DOI:10.1073/pnas.1218694110 · 9.81 Impact Factor
Show more