Article

NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.

Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
Nature (Impact Factor: 42.35). 07/2010; 466(7306):652. DOI: 10.1038/nature09316
Source: PubMed

ABSTRACT The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.

1 Follower
 · 
203 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide-binding domain and leucine-rich repeat-containing family, pyrin domain containing 3 (NLRP3) has recently emerged as a central regulator of innate immunity and inflammation in response to both sterile inflammatory and microbial invasion signals. Although its ability to drive proteolytic procaspase-1 processing has drawn more attention, NLPR3 can also activate NF-κB. To clarify the physiological relevance of this latter function, we examined the effect of NLRP3 on NF-κB activation and cytokine induction in RNA-interference-based NLRP3-knockdown cell lines generated from the human monocytic cell line THP-1. Knocking down NLRP3 reduced NF-κB activation and cytokine induction in the early stages of Staphylococcus aureus infection. Expression of cytokine genes induced by Staphylococcus aureus was not inhibited by a caspase-1 inhibitor, and did not occur through an autocrine mechanism in response to newly synthesized cytokines. We also demonstrated that NLRP3 could activate NF-κB and induce cytokines in response to sterile signals, monosodium urate crystals and aluminum adjuvant. Thus, NLRP3 mediates NF-κB activation in both sterile and microbially induced inflammation. Our findings show that not only does NLRP3 activate caspase-1 post-translationally, but it also induces multiple cytokine genes in the innate immune system.
    PLoS ONE 03/2015; 10(3):e0119179. DOI:10.1371/journal.pone.0119179 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perturbation of intracellular ion homeostasis is a major cellular stress signal for activation of NLRP3 inflammasome signaling that results in caspase-1-mediated production of IL-1β and pyroptosis. However, the relative contributions of decreased cytosolic K(+) concentration versus increased cytosolic Ca(2+) concentration ([Ca(2+)]) remain disputed and incompletely defined. We investigated roles for elevated cytosolic [Ca(2+)] in NLRP3 activation and downstream inflammasome signaling responses in primary murine dendritic cells and macrophages in response to two canonical NLRP3 agonists (ATP and nigericin) that facilitate primary K(+) efflux by mechanistically distinct pathways or the lysosome-destabilizing agonist Leu-Leu-O-methyl ester. The study provides three major findings relevant to this unresolved area of NLRP3 regulation. First, increased cytosolic [Ca(2+)] was neither a necessary nor sufficient signal for the NLRP3 inflammasome cascade during activation by endogenous ATP-gated P2X7 receptor channels, the exogenous bacterial ionophore nigericin, or the lysosomotropic agent Leu-Leu-O-methyl ester. Second, agonists for three Ca(2+)-mobilizing G protein-coupled receptors (formyl peptide receptor, P2Y2 purinergic receptor, and calcium-sensing receptor) expressed in murine dendritic cells were ineffective as activators of rapidly induced NLRP3 signaling when directly compared with the K(+) efflux agonists. Third, the intracellular Ca(2+) buffer, BAPTA, and the channel blocker, 2-aminoethoxydiphenyl borate, widely used reagents for disruption of Ca(2+)-dependent signaling pathways, strongly suppressed nigericin-induced NLRP3 inflammasome signaling via mechanisms dissociated from their canonical or expected effects on Ca(2+) homeostasis. The results indicate that the ability of K(+) efflux agonists to activate NLRP3 inflammasome signaling can be dissociated from changes in cytosolic [Ca(2+)] as a necessary or sufficient signal. Copyright © 2015 by The American Association of Immunologists, Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular bacterial pathogen Legionella pneumophila provokes strong host responses and has proven to be a valuable model for the discovery of novel immunosurveillance pathways. Our previous work revealed that an environmental isolate of L. pneumophila induces a noncanonical form of cell death, leading to restriction of bacterial replication in primary mouse macrophages. Here we show that such restriction also occurs in infections with wild type clinical isolates. Importantly, we found that a lysine to arginine mutation at residue 88 (K88R) in the ribosome protein RpsL that not only confers bacterial resistance to streptomycin, but more importantly, severely attenuated the induction of host cell death and enabled L. pneumophila to replicate in primary mouse macrophages. Although conferring similar resistance to streptomycin, a K43N mutation in RpsL does not allow productive intracellular bacterial replication. Further analysis indicated that RpsL is capable of effectively inducing macrophage death via a pathway involved in lysosomal membrane permeabilization; the K88R mutant elicits similar responses but is less potent. Moreover, cathepsin B, a lysosomal protease that causes cell death after being released into the cytosol upon the loss of membrane integrity, is required for efficient RpsL-induced macrophage death. Furthermore, despite the critical role of cathepsin B in delaying RpsL-induced cell death, macrophages lacking cathepsin B do not support productive intracellular replication of L. pneumophila harboring wild type RpsL. This suggests the involvement of other yet unidentified components in the restriction of bacterial replication. Our results identified RpsL as a regulator in the interactions between bacteria such as L. pneumophila and primary mouse macrophages by triggering unique cellular pathways that restrict intracellular bacterial replication.
    PLoS Pathogens 03/2015; 11(3):e1004704. DOI:10.1371/journal.ppat.1004704 · 8.06 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Feb 26, 2015