Article

PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica.

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
Molecular cell (Impact Factor: 14.46). 07/2010; 39(2):209-21. DOI: 10.1016/j.molcel.2010.06.021
Source: PubMed

ABSTRACT We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.

0 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P) does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro) and/or PPG (Pro-Pro-Gly)-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids), only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.
    PLoS ONE 11/2014; 9(11):e111800. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P) to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely a proline triplet in ValS, the tRNA synthetase, that charges tRNAVal with valine. Here, we show that expression of ValS in vivo and in vitro requires EF-P and demonstrate that the proline triplet located in the active site of ValS is important for efficient charging of tRNAVal with valine and preventing formation of mischarged Thr-tRNAVal as well as efficient growth of E. coli in vivo. We suggest that the critical role of the proline triplet for ValS activity may explain why bacterial cells coevolved the EF-P rescue system.
    Cell Reports 09/2014; · 7.21 Impact Factor
  • Croatica Chemica Acta 01/2011; 84(2):149-157. · 0.56 Impact Factor

Full-text (2 Sources)

Download
41 Downloads
Available from
Jun 4, 2014