Article

C-reactive protein triggers inflammatory responses partly via TLR4/IRF3/NF-κB signaling pathway in rat vascular smooth muscle cells.

Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
Life sciences (Impact Factor: 2.56). 09/2010; 87(11-12):367-74. DOI: 10.1016/j.lfs.2010.07.012
Source: PubMed

ABSTRACT C-reactive protein (CRP) plays an important role in the inflammatory process of atherosclerosis. Toll-like receptor 4 (TLR4) participates in atherogenesis by mediating the inflammatory responses. The aim of this experiment was to investigate the pro-inflammatory effects and mechanisms of CRP in rat vascular smooth muscle cells (VSMCs), especially focusing on the effects of CRP on IL-6 and peroxisome proliferator-activated receptor γ (PPARγ), and TLR4-dependent signal pathway.
rat VSMCs were cultured, and CRP was used as a stimulant for IL-6 and peroxisome proliferator-activated receptor γ (PPARγ). IL-6 level in the culture supernatant was measured by ELISA, and mRNA and protein expressions were assayed by quantitative real-time PCR and western blot, respectively. RNA interference was used to assess the roles of TLR4 and interferon regulatory factor 3 (IRF3) in the pro-inflammatory signal pathway of CRP.
CRP stimulated IL-6 secretion, and inhibited mRNA and protein expression of PPARγ in VSMCs in a concentration-dependent manner. Additionally, CRP induced TLR4 expression, promoted nuclear translocation of NF-κB (p65), and augmented IκBα phosphorylation in VSMCs. Taken together, CRP induces the inflammatory responses through increasing IL-6 generation and reducing PPARγ expression in VSMCs, which is mediated by TLR4/IRF3/NF-κB signal pathway.
CRP is able to stimulate IL-6 production and to inhibit PPARγ expression in VSMCs via MyD88-independent TLR4 signaling pathway (TLR4/IRF3/NF-κB). These provide the novel evidence for the pro-inflammatory action of CRP involved in atherogenesis.

0 Bookmarks
 · 
227 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress can either enhance or suppress immune functions depending on a variety of factors such as duration of stressful condition. Chronic stress has been demonstrated to exert a significant suppressive effect on immune function. However, the mechanisms responsible for this phenomenon remain to be elucidated. Here, male C57BL/6 mice were placed in a 50-ml conical centrifuge tube with multiple punctures to establish a chronic restraint stress model. Serum IL-10 levels, IL-10 production by the splenocytes, and activation of STAT3 in the mouse spleen were assessed. We demonstrate that IL-10/STAT3 axis was remarkably activated following chronic stress. Moreover, TLR4 and p38 MAPK play a pivotal role in the activation of IL-10/STAT3 signaling cascade. Interestingly, blocking antibody against IL-10 receptor and inhibition of STAT3 by STAT3 inhibitor S3I-201 attenuates stress-induced lymphocyte apoptosis. Inhibition of IL-10/STAT3 dramatically inhibits stress-induced reduction in IL-12 production. Furthermore, disequilibrium of Th1/Th2 cytokine balance caused by chronic stress was also rescued by blocking IL-10/STAT3 axis. These results yield insight into a new mechanism by which chronic stress regulates immune functions. IL-10/STAT3 pathway provides a novel relevant target for the manipulation of chronic stress-induced immune suppression.
    Brain Behavior and Immunity 01/2014; 36:118–127. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardio-vascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 μg per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA2 (thromboxane A2) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.
    Clinical Science 06/2012; 122(11):535-43. · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to determine in psoriatic arthritis (PsA) patients the Toll-like receptor (TLR) 4 and C-reactive gene (CRP) polymorphisms and allele frequency and to investigate the relationship between clinical parameters and gene polymorphisms. We enrolled in this study 31 PsA and 41 healthy control subjects. PsA diagnosis was according to CASPAR criteria. Bath ankylosing spondylitis diseases activity index, Maastricht ankylosing spondylitis enthesitis score, and Bath ankylosing spondylitis functional index were measured. C, A, and T alleles of CRP and A and G alleles of TLR 4 were determined using the analysis of melting curves after real-time PCR. CRP A, C, and T allele frequency in controls was 26.8, 73.2, and 36.6 %, respectively. In the PsA patient group, A, C, and T allele frequency was 9.7, 87.1, and 12.9 %, respectively. Between control and PsA groups, there was a significant difference in A, C, and T allele frequency (P = 0.008, 0.038, and 0.001, respectively). The frequency of CRP gene polymorphisms (CA, AA, CT, TA, and TT alleles) in the control group was 56.1 % and in the PsA group was 22.6 %. There was a significant difference between the two groups (P = 0.004). The absence of a CRP gene polymorphism was a risk factor for PsA (odds ratio 4.3, 95 % CI; 1.5-12.4, P = 0.005). TLR gene haploid frequency was investigated, and all control subjects had the wild-type AA allele. PsA patient GA allele frequency was 6.5 %. There was no significant difference between the two groups (P = 0.182). GA mutant allele frequency was related to PsA (odds ratio 7.03, 95 % CI; 0.32-151.9, P = 0.214). We have shown that CRP gene polymorphisms are higher in control subjects than PsA patients, and TLR 4 gene polymorphisms were found to be related to PsA.
    Clinical Rheumatology 04/2014; · 2.04 Impact Factor

Full-text

View
4 Downloads
Available from
May 22, 2014